OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 19 — Jul. 1, 2004
  • pp: 3915–3924

Raman-shifted eye-safe aerosol lidar

Shane D. Mayor and Scott M. Spuler  »View Author Affiliations


Applied Optics, Vol. 43, Issue 19, pp. 3915-3924 (2004)
http://dx.doi.org/10.1364/AO.43.003915


View Full Text Article

Enhanced HTML    Acrobat PDF (2039 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design features of, and first observations from, a new elastic backscatter lidar system at a wavelength of 1543 nm are presented. The transmitter utilizes stimulated Raman scattering in high-pressure methane to convert fundamental Nd:YAG radiation by means of the 1st Stokes shift. The wavelength-converting gas cell features multipass operation and internal fans. Unlike previous lidar developments that used Raman scattering in methane, the pump beam is not focused in the present configuration. This feature prevents optical breakdown of the gas inside the cell. Additionally, the gas cell is injection seeded by a diode to improve conversion efficiency and beam quality. The receiver uses a 40.6-cm-diameter telescope and a 200-μm InGaAs avalanche photodiode. The system is capable of operating in a dual-wavelength mode (1064 and 1543 nm simultaneously) for comparison or in a completely eye-safe mode. The system is capable of transmitting an energy of more than 200 mJ/pulse at 10 Hz. Aerosol backscatter data from vertical and horizontal pointing periods are shown.

© 2004 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(140.3550) Lasers and laser optics : Lasers, Raman
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: October 13, 2003
Revised Manuscript: March 7, 2004
Published: July 1, 2004

Citation
Shane D. Mayor and Scott M. Spuler, "Raman-shifted eye-safe aerosol lidar," Appl. Opt. 43, 3915-3924 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-19-3915


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993). [CrossRef]
  2. American National Standards Institute, “American National Standard for the Safe Use of Lasers, ANSI Z136.1-2000” (American National Standards Institute, New York, 2000), p. 163.
  3. M. S. Webb, P. F. Moulton, J. J. Kasinski, R. I. Burnham, G. Loiacono, R. Stolzenberger, “High-average-power KTiOAsO4 optical parametric oscillator,” Opt. Lett. 23, 1161–1163 (1998). [CrossRef]
  4. S. Kück, K. Petermann, U. Pohlmann, U. Schönhoff, G. Huber, “Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12,” Appl. Phys. B 58, 153–156 (1994). [CrossRef]
  5. H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Petermann, G. Huber, W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993). [CrossRef]
  6. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Optics 36, 3475–3490 (1997). [CrossRef]
  7. G. Roy, P. Mathieu, “Comparison of Raman and degenerated optical parametric oscillators for a high-energy and high-repetition-rate eye-safe laser,” Opt. Eng. 35, 3579–3584 (1996). [CrossRef]
  8. W. Carnuth, T. Trickl, “A powerful eyesafe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 micron radiation,” Rev. Sci. Instrum. 65, 3324–3331 (1994). [CrossRef]
  9. E. M. Patterson, D. W. Roberts, G. G. Gimmestad, “Initial measurements using a 1.54-μm eyesafe Raman shifted lidar,” Appl. Opt. 28, 4978–4981 (1989). [CrossRef] [PubMed]
  10. N. A. Kurnit, R. F. Harrison, R. R. Karl, J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, W. S. Hungate, “Generation of 1.54 micron radiation with application to an eye-safe laser lidar,” in Proceedings of the International Conference on LASERS ’97, S. Press, ed. (STS, McLean, Va., 1998), pp. 608–610.
  11. E. M. Patterson, G. G. Gimmestad, D. W. Roberts, S. C. Gimmestad, “Boundary layer height measurements with an eyesafe lidar system,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 57–60.
  12. G. Anstett, A. Borsutzky, R. Wallenstein, “Investigation of the spatial beam quality of pulsed ns-OPOs,” Appl. Phys. B 76, 541–545 (2003). [CrossRef]
  13. “High-Energy, Eyesafe Lidar for Long-Range, High-Resolution Aerosol Detection,” final report for period from 22 March 1995 to 31 December 1997, [Phase II, Small Business Innovative Research (SBIR)], prepared for NASA Langley Research Center by Research Division, Schwartz Elecro-Optics, Inc., 135 South Road, Bedford, Mass. 01730.
  14. S. R. Harrell, “Atmospheric laser radar measurements using two novel, eye-safe infrared optical parametric oscillators,” Ph.D. dissertation (University of South Florida, Tampa, Fla., 1995).
  15. S. R. Harrell, W. Wilcox, D. Killinger, G. A. Rines, R. Schwarz, “High power, eye-safe 1.57 micron OPO lidar for atmospheric boundary layer measurements,” in Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements, J. Leonelli, D. K. Killinger, W. Vaughan, M. G. Yost, eds., Proc. SPIE2366, 354–357 (1995). [CrossRef]
  16. I. Acharekar, M., Schwartz Electro-Optics, 3259 Progress Drive, Orlando, Fla. 32826 (personal communication, 2003).
  17. D. A. Richter, N. S. Higdon, P. Ponsardin, D. Sanchez, T. H. Chyba, D. A. Temple, W. Gong, R. Battle, M. Edmondson, A. Futrell, D. Harper, L. Haughton, D. Johnson, K. Lewis, R. S. Payne-Baggott, “Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University,” in Lidar Remote Sensing for Industry and Environment Monitoring II, U. N. Singh, ed., Proc. SPIE4484, 8–16 (2002). [CrossRef]
  18. S. G. Hummel, A. Pauchard, M. Bitter, Z. Pan, Y. H. Lo, Y. Kang, P. Mages, K. L. Yu, “InGaAs-on-Si avalanche photodiodes,” IEEE LEOS Newsletter 16, 3–6 (2002).
  19. P. Mamidipudi, D. Killinger, “Optimal detector selection for a 1.5 micron KTP OPO Atmospheric Lidar,” in Laser Radar Technology and Applications IV, G. W. Kamerman, C. Werner, eds., Proc. SPIE3707, 327–335 (1999). [CrossRef]
  20. T. F. J. Johnston, “M2 concept characterizes beam quality,” Laser Focus World173–183 (May1990).
  21. A. Anderson, The Raman Effect (Marcel Dekker, New York, 1971).
  22. L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental investigation of high-power single pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5042 (1997). [CrossRef] [PubMed]
  23. A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane—experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994). [CrossRef]
  24. J. G. Wessell, K. Repasky, L. J. Carlsten, “Efficient seeding of a Raman amplifier with a visible laser diode,” Opt. Lett. 19, 1430–1432 (1994). [CrossRef]
  25. G. R. Gray, F. Pratte, “An eye-safety radar for lidar operations,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.9.
  26. F. Pratte, G. R. Gray, J. Fox, “Airborne proximity radar for laser eye safety: design and development,” in 31st International Conference on Radar Meteorology (American Meteorological Society, Boston, Mass., 2003), p. P5B.10.
  27. V. Simeonov, V. Mitev, H. van de Bergh, B. Calpini, “Raman frequency shifting in a CH4:H2:Ar mixture pumped by the fourth harmonic of a Nd:YAG laser,” Appl. Opt. 37, 7112–7115 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited