OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 19 — Jul. 1, 2004
  • pp: 3925–3930

Retrieving Seawater-Backscattering Profiles from Coupling Raman and Elastic Lidar Data

Aleksey V. Malinka and Eleonora P. Zege  »View Author Affiliations


Applied Optics, Vol. 43, Issue 19, pp. 3925-3930 (2004)
http://dx.doi.org/10.1364/AO.43.003925


View Full Text Article

Acrobat PDF (117 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a technique for retrieving seawater-backscattering profiles that is based on the joint use of elastic and Raman lidar returns. We suggest using two lidar channels: the Raman channel and the elastic channel with a light frequency equal to a half-sum of initial and Raman-shifted frequencies of the Raman channel. These specific wavelengths provide the same attenuation laws for elastic and Raman signals if absorption and scattering spectra can be approximated by a power law. In particular, seawater supplies such a possibility in the region of 400–500 nm if extremely bioproductive waters are not considered and the chlorophyll absorption peak at 440 nm does not come out of the background of dissolved organic matter absorption. With these specific initial wavelengths, the elastic and Raman lidar returns differ only in the backscattering coefficients. Because the Raman-backscattering coefficient is constant along the profile, the (elastic-to-Raman) ratio of these lidar returns directly produces the profile of the elastic-backscattering coefficient. This technique stays valid even under multiple-scattering conditions, which is of great importance for seawater sounding.

© 2004 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(290.5860) Scattering : Scattering, Raman

Citation
Aleksey V. Malinka and Eleonora P. Zege, "Retrieving Seawater-Backscattering Profiles from Coupling Raman and Elastic Lidar Data," Appl. Opt. 43, 3925-3930 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-19-3925


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next-generation NASA airborne oceanographic lidar system,” Appl. Opt. 40, 336–342 (2001).
  2. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
  3. J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 5, 1457–1465 (1996).
  4. D. N. Klyshko and V. V. Fadeev, “Remote detecting of water impurity by means of laser spectroscopy calibrated by Raman scattering,” Dokl. Akad. Nawk SSSR, 238, 320–323 (1978).
  5. M. Bristow, D. Nielsen, D. Bundy, and R. Furtek, “Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt. 20, 2889–2906 (1981).
  6. F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
  7. V. Sherlock, A. Garnier, A. Hauchecorne, and P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999).
  8. V. Sherlock, A. Hauchecorne, and J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar system,” Appl. Opt. 38, 5816–5837 (1999).
  9. J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
  10. O. V. Kopelevich, “Low-parametric model of seawater optical properties,” in Ocean Optics I: Physical Ocean Optics, A. S. Monin, ed. (Moscow, Nauka 1983), pp. 208–234.
  11. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
  12. S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of the specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1989).
  13. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994).
  14. A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, “Global relationships on the inherent optical properties of the oceans,” J. Geophys. Res. 103, 24955–24968 (1998).
  15. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
  16. A. V. Malinka and E. P. Zege, “Analytical modeling of Raman lidar return, including multiple scattering,” Appl. Opt. 42, 1075–1081 (2003).
  17. I. L. Katsev, E. P. Zege, A. S. Prikhach, and I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. A 14, 1338–1346 (1997).
  18. K. S. Shifrin, Introduction to Ocean Optics (Leningrad, Hydrometeoizdat, 1983), p. 184.
  19. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
  20. E. P. Zege, I. L. Katsev, A. S. Prikhach, G. D. Ludbrook, and P. Bruscaglioni, “Analytical and computer modeling of the oceanic lidar performance,” in Twelfth International Workshop on Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, and T. Rother, eds., Proc. SPIE 5059, 189–199 (2002).
  21. B. M. Concannon, D. M. Allocca, T. P. Curran, J. E. Prentice, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “A successful comparison of experimental and modeled lidar data,” in Ocean Optics XVI, CD-ROM (Office of Naval Research, Washington, D.C., 2002).
  22. R. N. Keeler, B. L. Ulich, E. Branham, and E. P. Zege, “Secchi disk measurements made under ideal conditions,” in Ocean Optics XVI, CD-ROM (Office of Naval Research, Washington, D.C., 2002); see also www.wetlabs.com.
  23. E. Zege, I. Katsev, A. Prikhach, and G. Ludbrook, “Computer simulation with regard to pulse stretching for oceanic lidar return,” in Proceedings of the International Conference on Current Problems in Optics of Natural Waters (ONW 2001), Iosif Levin and Gary Gilbert, eds. (St. Petersburg, Russia, D. S. Rozhdestvensky Optical Society, 2001), p. 255.
  24. J. W. McLean, J. D. Freeman, and R. E. Walker, “Beam spread function with time dispersion,” Appl. Opt. 37, 4701–4711 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited