OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 2 — Jan. 10, 2004
  • pp: 463–470

Multichip module with planar-integrated free-space optical vector-matrix-type interconnects

Matthias Gruber  »View Author Affiliations

Applied Optics, Vol. 43, Issue 2, pp. 463-470 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (2842 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Even in the semiconductor industry, free-space optical technology is nowadays seen as a prime option for solving the continually aggravating problem with VLSI chips, namely, that the interconnect technology has failed to keep pace with the increase in communication volume. To make free-space optics compatible with established lithography-based design and fabrication techniques the concept of planar integration was proposed approximately a decade ago. Here its evolution into a photonic microsystems engineering concept is described. For demonstration, a multichip module with planar-integrated free-space optical vector-matrix-type interconnects was designed and built. It contains flip-chip-bonded vertical-cavity surface emitting laser arrays and a hybrid chip with an array of multiple-quantum-well p-i-n diodes on top of a standard complementary metal-oxide semiconductor circuit as key optoelectronic hardware components. The optical system is integrated into a handy fused-silica substrate and fabricated with surface-relief diffractive phase elements. It has been optimized for the given geometrical and technological constraints and provides a good interconnection performance, as was verified in computer simulations on the basis of ray tracing and in practical experiments.

© 2004 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(200.4650) Optics in computing : Optical interconnects
(200.4860) Optics in computing : Optical vector-matrix systems
(220.0220) Optical design and fabrication : Optical design and fabrication

Original Manuscript: March 22, 2003
Published: January 10, 2004

Matthias Gruber, "Multichip module with planar-integrated free-space optical vector-matrix-type interconnects," Appl. Opt. 43, 463-470 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).
  2. For the International Technology Roadmap for Semiconductors, see http://public.itrs.net/ .
  3. Y. Lee, E. Towe, M. W. Haney, eds., issue on optical interconnections for digital systems, Proc. IEEE88, 723–863 (2000). [CrossRef]
  4. IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002).
  5. F. Tooley, “Optical interconnects do not require improved optoelectronic devices,” in Optics in Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 14–17 (1998). [CrossRef]
  6. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000). [CrossRef]
  7. K. Iga, M. Oikawa, S. Misawa, J. Banno, Y. Kokubun, “Stacked planar optics: an application of the planar microlens,” Appl. Opt. 21, 3456–3460 (1982). [CrossRef] [PubMed]
  8. M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proc. IEEE 85, 1833–1856 (1997). [CrossRef]
  9. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989). [CrossRef] [PubMed]
  10. J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994). [CrossRef]
  11. S. Sinzinger, J. Jahns, Microoptics (Wiley, Weinheim, Germany, 1999).
  12. H.-P. Herzig, ed., Micro-Optics (Taylor & Francis, London, 1997).
  13. S. Sinzinger, J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997). [CrossRef] [PubMed]
  14. W. Eckert, V. Arrizon, S. Sinzinger, J. Jahns, “Compact planar-integrated optical correlator for spatially incoherent signals,” Appl. Opt. 39, 759–765 (2000). [CrossRef]
  15. D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000). [CrossRef]
  16. P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).
  17. C. Gimkiewicz, J. Jahns, “Thermal management of VCSEL diode arrays in integrated planar free-space optical systems,” presented at the Microsystem Technologies 98 meeting, Potsdam, Germany, 1–3 December 1998.
  18. M. Gruber, E. ElJoudi, S. Sinzinger, J. Jahns, “Practical realization of massively parallel fiber-free-space optical interconnects,” Appl. Opt. 40, 2902–2908 (2001). [CrossRef]
  19. K.-H. Gulden, S. Eitel, S. Hunziker, D. Vez, C. Gimkiewicz, M. T. Gale, M. Moser, “High density VCSEL arrays,” in 2002 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 129–130.
  20. K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995). [CrossRef]
  21. A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996). [CrossRef]
  22. A. V. Krishnamoorthy, K. W. Goossen, “Optoelectronic-VLSI: photonics integrated with VLSI circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 899–912 (1998). [CrossRef]
  23. C. B. Kuznia, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing, Vol. 48 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.
  24. P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996). [CrossRef]
  25. R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Reading, Mass., 1990).
  26. J. W. Goodman, A. R. Diaz, L. M. Woody, “Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2, 1–3 (1978). [CrossRef] [PubMed]
  27. A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(10) 50–60 (1987). [CrossRef]
  28. K.-H. Brenner, T. Merklein, “Implementation of an optical crossbar network based on directional switches,” Appl. Opt. 31, 2446–2451 (1992). [CrossRef] [PubMed]
  29. C. P. Barrett, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Tagizadeh, A. C. Walker, “Components for the implementation of free-space optical crossbars,” Appl. Opt. 35, 6934–6944 (1996). [CrossRef] [PubMed]
  30. M. Gruber, S. Sinzinger, J. Jahns, “Planar-integrated optical vector-matrix multiplier,” Appl. Opt. 39, 5367–5373 (2000). [CrossRef]
  31. For information on the CO-OP program, see the URL http://www.bell-labs.com/project/oevlsi/ .
  32. M. Testorf, J. Jahns, “Imaging properties of planar-integrated microoptics,” J. Opt. Soc. Am. A 16, 1175–1183 (1999). [CrossRef]
  33. F. Wyrowski, O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988). [CrossRef]
  34. M. Gruber, D. Hagedorn, W. Eckert, “Precise and simple optical alignment method for double-sided lithography,” Appl. Opt. 40, 5052–5055 (2001). [CrossRef]
  35. For information on the HOLMS, see the URL http://www.phy.hw.ac.uk/phykjs/OIC/HOLMS/general/home/home.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited