OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 20 — Jul. 9, 2004
  • pp: 4055–4069

SIMBAD: a field radiometer for satellite ocean-color validation

Pierre-Yves Deschamps, Bertrand Fougnie, Robert Frouin, Pierre Lecomte, and Christian Verwaerde  »View Author Affiliations


Applied Optics, Vol. 43, Issue 20, pp. 4055-4069 (2004)
http://dx.doi.org/10.1364/AO.43.004055


View Full Text Article

Enhanced HTML    Acrobat PDF (412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hand-held radiometer, called SIMBAD, has been designed and built specifically for evaluating satellite-derived ocean color. It provides information on the basic ocean-color variables, namely aerosol optical thickness and marine reflectance, in five spectral bands centered at 443, 490, 560, 670, and 870 nm. Aerosol optical thickness is obtained by viewing the Sun disk and measuring the direct atmospheric transmittance. Marine reflectance is obtained by viewing the ocean surface and measuring the upwelling radiance through a vertical polarizer in a geometry that minimizes glitter and reflected sky radiation, i.e., at 45° from nadir (near the Brewster angle) and at 135° in azimuth from the Sun’s principal plane. Relative inaccuracy on marine reflectance, established theoretically, is approximately 6% at 443 and 490 nm, 8% at 560 nm, and 23% at 670 nm for case 1 waters containing 0.1 mg m-3 of chlorophyll a. Measurements by SIMBAD and other instruments during the Second Aerosol Characterization Experiment, the Aerosols-99 Experiment, and the California Cooperative Oceanic Fisheries Investigations cruises agree within uncertainties. The radiometer is compact, light, and easy to operate at sea. The measurement protocol is simple, allowing en route measurements from ships of opportunity (research vessels and merchant ships) traveling the world’s oceans.

© 2004 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: July 11, 2003
Revised Manuscript: March 10, 2004
Published: July 10, 2004

Citation
Pierre-Yves Deschamps, Bertrand Fougnie, Robert Frouin, Pierre Lecomte, and Christian Verwaerde, "SIMBAD: a field radiometer for satellite ocean-color validation," Appl. Opt. 43, 4055-4069 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-20-4055


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Y. El Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–63 (1980). [CrossRef] [PubMed]
  2. P.-Y. Deschamps, F.-M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J.-C. Buriez, G. Sèze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 3598–3615 (1994). [CrossRef]
  3. S. B. Hooker, W. Esaias, “An overview of the SeaWiFS project,” EOS Trans. Am. Geophys. Union 74, 245–246 (1993). [CrossRef]
  4. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 2145–2153 (1989). [CrossRef]
  5. M. Rast, J.-L. Bézy, “The ESA medium resolution imaging spectrometer (MERIS): requirements to its mission and performance of its system,” in Remote Sensing in Action, Proceedings of the 21st Annual Conference of the Remote Sensing Society, P. J. Curran, C. Robertson, eds. (Remote Sensing Society, Nottingham, UK, 1985), pp. 125–132.
  6. T. Nakajima, A. Higurashi, K. Aoki, T. Endoh, H. Fukushima, M. Toratani, Y. Mitomi, B. G. Mitchell, R. Frouin, “Early phase emphasis of OCTS radiance data for aerosol remote sensing,” IEEE Trans. Geosci. Remote Sens. 37, 1575–1585 (1999). [CrossRef]
  7. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  8. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988). [CrossRef] [PubMed]
  9. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  10. H. R. Gordon, “Atmospheric correction of ocean-color imagery in the Earth observing system era,” J. Geophys. Res. 102, 17,081–17,106 (1997). [CrossRef]
  11. R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256. [CrossRef]
  12. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93, 10,749–10,768 (1988). [CrossRef]
  13. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
  14. J. L. Mueller, R. W. Austin, Ocean Optics Protocols for SeaWiFS Validation, Revision 1, NASA Tech. Memo. 104566, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).
  15. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17,209–17,217 (1997). [CrossRef]
  16. M. Schwindling, P.-Y. Deschamps, R. Frouin, “Validation of aerosol models for satellite ocean color remote sensing,” J. Geophys. Res. 103, 24,919–24,936 (1998). [CrossRef]
  17. M. Viollier, “Radiometric calibration of the Coastal Zone Color Scanner on Nimbus-7, a proposed adjustment,” Appl. Opt. 21, 6142–6145 (1982). [CrossRef]
  18. B. Fougnie, P.-Y. Deschamps, R. Frouin, “Vicarious calibration of the POLDER ocean color spectral bands using in-situ measurements,” IEEE Trans. Geosci. Remote Sens. 37, 1567–1574 (1999). [CrossRef]
  19. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001). [CrossRef]
  20. G. L. Clarke, G. C. Ewing, C. J. Lorenzen, “Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration,” Science 167, 1119–1121 (1970). [CrossRef] [PubMed]
  21. K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida,” Limnol. Oceanogr. 30, 286–298 (1985). [CrossRef]
  22. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 160–166 (1997). [CrossRef]
  23. Z. P. Lee, K. L. Carder, T. G. Peacock, R. G. Steward, “Remote-sensing reflectance measured with and without a vertical polarizer,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 483–488 (1997). [CrossRef]
  24. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999). [CrossRef]
  25. B. Fougnie, R. Frouin, P. Lecomte, P.-Y. Deschamps, “Reduction of skylight reflection effects in the above-water measurements of diffuse marine reflectance,” Appl. Opt. 38, 3844–3856 (1999). [CrossRef]
  26. N. A. Krotkov, A. P. Vasilkov, “Reduction of skylight reflection effects in the above-water measurements of diffuse marine reflectance: comment,” Appl. Opt. 39, 1379–1381 (2000). [CrossRef]
  27. S. B. Hooker, G. Lazin, G. Zibordi, S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Technol. 19, 486–515 (2002). [CrossRef]
  28. G. Zibordi, S. B. Hooker, J. F. Berthon, D. D’Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Ocean. Technol. 19, 808–819 (2002). [CrossRef]
  29. S. B. Hooker, A. Morel, “Platform and environmental effects on above-water determinations of water-leaving radiances,” J. Atmos. Ocean. Technol. 20, 187–205 (2003). [CrossRef]
  30. D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39, 456–469 (2000). [CrossRef]
  31. H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phys. 90, 205–258 (1984). [CrossRef]
  32. F. Kasten, A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735–4738 (1989). [CrossRef] [PubMed]
  33. G. W. Paltridge, C. M. R. Platt, “Radiative processes in meteorology and climatology,” in Development in Atmospheric Science (Elsevier, New York, 1977).
  34. W. A. Hovis, J. S. Knoll, “Characteristics of an internally illuminated calibration sphere,” Appl. Opt. 22, 4004–4007 (1983). [CrossRef] [PubMed]
  35. G. Meister, P. Abel, R. Barnes, J. Cooper, C. Davis, G. Fargion, R. Frouin, M. Godin, D. Korwan, R. Maffione, C. McClain, S. McLean, D. Menzies, A. Poteau, J. Robertson, J. Sherman, “Comparison of spectral radiance calibrations at oceanographic and atmospheric research laboratories,” Metrologia 40, S93–S96 (2003). [CrossRef]
  36. G. M. Keating, M. C. Pitts, D. F. Young, “Improved reference models for middle atmosphere ozone (New CIRA),” in Middle Atmosphere Program Handbook for MAP, G. M. Keating, ed. (Scientific Committee on Solar-Terrestrial Physics Secretariat, U. of Illinois, Urbana, Ill., 1989), Vol. 31, pp. 37–49.
  37. P.-Y. Deschamps, M. Herman, D. Tanré, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22, 3751–3758 (1983). [CrossRef] [PubMed]
  38. J.-L. Deuzé, M. Herman, R. Santer, “Fourier series expansion of the transfer equation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 41, 483–494 (1989). [CrossRef]
  39. D. Tanré, M. Herman, P.-Y. Deschamps, A. de Leffe, “Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties,” Appl. Opt. 18, 3587–3597 (1979). [CrossRef] [PubMed]
  40. R. Frouin, D. Lingner, C. Gautier, K. S. Baker, R. C. Smith, “A simple analytical formula to compute total and photosynthetically available solar irradiance at the ocean surface under clear skies,” J. Geophys. Res. 94, 9731–9742 (1989). [CrossRef]
  41. R. Frouin, M. Schwindling, P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: in-situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14,361–14,371 (1996). [CrossRef]
  42. B. Fougnie, P.-Y. Deschamps, “Observation et modélisation de la signature spectrale de l’écume de mer,” in Proceedings of the 7th International Colloquium on Physical Measurements and Signatures in Remote Sensing, G. Guyot, T. Phulpin, eds. (Balkema, Rotterdam, 1997), Vol. 1, pp. 227–234.
  43. J.-M. Nicolas, P.-Y. Deschamps, R. Frouin, “Spectral reflectance of oceanic whitecaps in the visible and near infrared: aircraft measurements over open ocean,” Geophys. Res. Lett. 28, 4445–4448 (2001). [CrossRef]
  44. A. Ivanoff, “Polarization measurements in the sea,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), Chap. 8.
  45. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  46. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), Chap. 1.
  47. J. R. Zaneveld, D. M. Roach, H. Pak, “The determination of the index of refraction of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974). [CrossRef]
  48. E. Aas, “The refractive index of phytoplankton,” Inst. Rep. Ser. 46 (Institutt for Geofysikk, Oslo University, Oslo, Norway, 1981).
  49. World Meteorological Organization (WMO), “A preliminary cloudless standard atmosphere for radiation computation,” Reps. WCP-112 and WMO/TD 24 (World Meteorological Organization, Geneva, Switzerland, 1986).
  50. B. Fougnie, R. Frouin, P.-Y. Deschamps, M. Chami, A. Poteau, O. Hagolle, “Computations and measurements of polarized marine reflectance,” in Polarization Analysis, Measurements and Remote Sensing III, D. B. Chenault, M. J. Duggin, W. E. Egan, D. H. Goldstein, eds., Proc. SPIE4133, 191–201 (2000). [CrossRef]
  51. T. Matsumoto, P. Russell, C. Mina, W. Van Ark, V. Banta, “Airborne tracking sunphotometer,” J. Atmos. Ocean. Technol. 4, 336–339 (1987). [CrossRef]
  52. J. M. Livingston, V. N. Kapustin, B. Schmid, P. B. Russell, P. K. Quinn, S. B. Timothy, A. D. Philip, V. Freudenthaler, “Shipboard sunphotometer measurements of aerosol optical depth spectra and columnar water vapor during ACE 2,” Tellus Ser. B 52, 594–619 (2000). [CrossRef]
  53. T. Nakajima, A. Higurashi, K. Aoki, T. Endoh, H. Fukushima, M. Toratani, Y. Mitomi, B. G. Mitchell, R. Frouin, “Early phase analysis of OCTS radiance data for aerosol remote sensing,” IEEE Trans. Geosci. Remote Sens. 37, 1575–1585 (1999). [CrossRef]
  54. K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, R. M. Reynolds, “2001: Aerosol depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20,811–20,820 (2001). [CrossRef]
  55. B. G. Mitchell, M. Kahru, “Algorithms for SeaWiFS standard products developed with the CalCOFI bio-optical data set,” in CalCOFI Reports, J. Olfe, ed. (Marine Life Research Group, Scripps Institution of Oceanography, La Jolla, Calif., 1998), Vol. 39, pp. 133–147.
  56. H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992). [CrossRef]
  57. A. Morel, J. L. Mueller, “Normalized water-leaving radiance and remote sensing reflectance: Bidirectional reflectance and other factors,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3, NASA Tech. Memo. 2002-210004, J. L. Mueller, G. S. Fargion, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2002), pp. 183–210.
  58. O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Int. Explor. Mer. 30, 3–15 (1965).
  59. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters II: Bi-directional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  60. R. Frouin, P.-Y. Deschamps, B. G. Mitchell, M. Kahru, “The Normalized Derived Phytoplankton Index for satellite ocean color applications,” EOS Trans. Am. Geophys. Union 79, 161 (1998).
  61. C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 104566, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  62. B. Fougnie, M. Lecourt, J.-M. Nicolas, P.-Y. Deschamps, “Validation of the POLDER ocean color algorithm using in-situ measurements and time series,” in ALPS 99 Symposium (Centre National d’Etude Spatiales, Toulouse, France, 1999), Vol. 1, P04, pp. 1–4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited