OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 21 — Jul. 20, 2004
  • pp: 4178–4181

Nonlinear Faraday Rotation for Optical Limitation

Elena Taskova, Sanka Gateva, Emilia Alipieva, Krzysztof Kowalski, Malgorzata Glódź, and Jerzy Szonert  »View Author Affiliations

Applied Optics, Vol. 43, Issue 21, pp. 4178-4181 (2004)

View Full Text Article

Acrobat PDF (85 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The possible use of the nonlinear Faraday effect for optical limitation of the laser power is investigated in a resonant Faraday medium placed between two crossed polarizers. The results are comparable with those obtained at strong magnetic fields as a result of the linear Faraday effect. Advantages of the method are the narrow bandwidth and the wide field of view. The investigations are interesting from the viewpoint of applications for optical sensor protection and automation of the experiment. All measurements are performed at the <i>F</i><sub><i>g</i></sub> = 2 → <i>F</i><sub><i>e</i></sub> = 1 hyperfine structure transition of the <sup>87</sup>Rb D1 line.

© 2004 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.2240) Optical devices : Faraday effect

Elena Taskova, Sanka Gateva, Emilia Alipieva, Krzysztof Kowalski, Malgorzata Glódź, and Jerzy Szonert, "Nonlinear Faraday Rotation for Optical Limitation," Appl. Opt. 43, 4178-4181 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Frey and Ch. Flytzanis, “Optical limitation in resonant Faraday media,” Opt. Lett. 25, 838–840 (2000).
  2. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
  3. D. Budker, D. J. Orlando, and V. Yashchuk, “Nonlinear laser spectroscopy and magneto-optics,” Am. J. Phys. 67, 584–592 (1999).
  4. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
  5. D. Budker, V. Yashchuk, and M. Zolotorev, “Nonlinear magneto-optic effects with ultranarrow widths,” Phys. Rev. Lett. 81, 5788–5791 (1998).
  6. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
  7. D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62, 043403 (2000).
  8. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
  9. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069–2075 (1982).
  10. Y. C. Chan and J. A. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron. 29, 2379–2384 (1993).
  11. B. P. Williams and St. Tomczyk, “Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds,” Appl. Opt. 35, 6494–6503 (1996).
  12. C. Fricke-Begemann, M. Alpers, and J. Hffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
  13. I. Novikova, A. B. Matsko, and G. R. Welsch, “Large polarization rotation via atomic coherence,” Opt. Lett. 26, 1016–1018 (2001).
  14. S. M. Rochester and D. Budker, “Nonlinear magneto-optical rotation in optically thick media,” J. Mod. Opt. 49, 2543–2553 (2002).
  15. E. Alipieva, S. Gateva, E. Taskova, V. Sarova, and S. Cartaleva, “Magnetic field influence on coherent resonances in a degenerate two-level system,” in 12th International School on Quantum Electronics: Laser Physics and Applications, P. A. Atanasov, A. A. Serafetinides, and I. N. Kolev, eds., Proc. SPIE 5226, 134–138 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited