OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 22 — Aug. 1, 2004
  • pp: 4427–4435

Effect of particle asphericity on single-scattering parameters: comparison between Platonic solids and spheres

Ping Yang, George W. Kattawar, and Warren J. Wiscombe  »View Author Affiliations


Applied Optics, Vol. 43, Issue 22, pp. 4427-4435 (2004)
http://dx.doi.org/10.1364/AO.43.004427


View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The single-scattering properties of the Platonic shapes, namely, the tetrahedron, hexahedron, octahedron, dodecahedron, and icosahedron, are investigated by use of the finite-difference time-domain method. These Platonic shapes have different extents of asphericity in terms of the ratios of their volumes (or surface areas) to those of their circumscribed spheres. We present the errors associated with four types of spherical equivalence that are defined on the basis of (a) the particle’s geometric dimension (b) equal surface area (A), (c) equal volume (V), and (d) equal-volume-to-surface-area ratio (V/A). Numerical results show that the derivations of the scattering properties of a nonspherical particle from its spherical counterpart depend on the definition of spherical equivalence. For instance, when the Platonic and spherical particles have the same geometric dimension, the phase function for a dodecahedron is more similar than that for an icosahedron to the spherical result even though an icosahedron has more faces than a dodecahedron. However, when the nonspherical and spherical particles have the same volume, the phase function of the icosahedral particle essentially converges to the phase function of the sphere, whereas the result for the dodecahedron is quite different from its spherical counterpart. Furthermore, the present scattering calculation shows that the approximation of a Platonic solid with a sphere based on V/A leads to larger errors than the spherical equivalence based on either volume or projected area.

© 2004 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(290.1090) Scattering : Aerosol and cloud effects
(290.1310) Scattering : Atmospheric scattering
(290.2200) Scattering : Extinction
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: November 28, 2003
Revised Manuscript: May 11, 2004
Published: August 1, 2004

Citation
Ping Yang, George W. Kattawar, and Warren J. Wiscombe, "Effect of particle asphericity on single-scattering parameters: comparison between Platonic solids and spheres," Appl. Opt. 43, 4427-4435 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-22-4427

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited