OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 24 — Aug. 20, 2004
  • pp: 4677–4684

Use of the δ-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media

Carole K. Hayakawa, Brian Y. Hill, Joon S. You, Frédéric Bevilacqua, Jerome Spanier, and Vasan Venugopalan  »View Author Affiliations

Applied Optics, Vol. 43, Issue 24, pp. 4677-4684 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a robust method to recover optical absorption, reduced scattering, and single-scattering asymmetry coefficients (μ a , μs, g1) of infinite turbid media over a range of (μs a ) spanning 3 orders of magnitude. This is accomplished through the spatially resolved measurement of irradiance at source-detector separations spanning 0.25–8 transport mean free paths (l*). These measurements are rapidly processed by a multistaged nonlinear optimization algorithm in which the measured irradiances are compared with predictions given by the δ-P1 variant of the diffusion approximation to the Boltzmann transport equation. The ability of the δ-P1 model to accurately describe radiative transport within media of arbitrary albedo and on spatial scales comparable to l* is the key element enabling the separation of g1 from μs.

© 2004 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.7050) Medical optics and biotechnology : Turbid media
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering

Original Manuscript: November 7, 2003
Revised Manuscript: April 29, 2004
Published: August 20, 2004

Carole K. Hayakawa, Brian Y. Hill, Joon S. You, Frédéric Bevilacqua, Jerome Spanier, and Vasan Venugopalan, "Use of the δ-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl. Opt. 43, 4677-4684 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001). [CrossRef]
  2. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  3. T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002). [CrossRef] [PubMed]
  4. S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994). [CrossRef]
  5. A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997). [CrossRef]
  6. A. J. Berger, V. Venugopalan, A. J. Durkin, T. Pham, B. J. Tromberg, “Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media,” Appl. Opt. 39, 1659–1667 (2000). [CrossRef]
  7. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206–215 (2003). [CrossRef] [PubMed]
  8. M. R. Jones, Y. Yamada, “Determination of the asymmetry parameter and scattering coefficient of turbid media from spatially resolved reflectance measurements,” Opt. Rev. 5, 72–76 (1998). [CrossRef]
  9. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999). [CrossRef]
  10. F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 1935–1945 (1999). [CrossRef]
  11. T. P. Moffitt, S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001). [CrossRef]
  12. A. Kienle, F. K. Forster, R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,” Opt. Lett. 26, 1571–1573 (2001). [CrossRef]
  13. I. Charvet, P. Theuler, B. Vermeulen, M. Saint-Ghislain, C. Biton, J. Jacquet, F. Bevilacqua, C. Depeursinge, P. Meda, “A new optical method for the non-invasive detection of minimal tissue alterations,” Phys. Med. Biol. 47, 2095–2108 (2002). [CrossRef] [PubMed]
  14. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996). [CrossRef] [PubMed]
  15. V. Venugopalan, J. S. You, B. J. Tromberg, “Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source-detector separations,” Phys. Rev. E 58, 2395–2407 (1998). [CrossRef]
  16. E. L. Hull, T. H. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A 18, 584–599 (2001). [CrossRef]
  17. J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21, 546–548 (1996). [CrossRef] [PubMed]
  18. J. H. Joseph, W. J. Wiscombe, J. A. Weinman, “The delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452–2459 (1976). [CrossRef]
  19. D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989). [CrossRef] [PubMed]
  20. S. A. Carp, S. A. Prahl, V. Venugopalan, “Radiative transport in the delta-P 1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9, 632–647 (2004). [CrossRef] [PubMed]
  21. J. S. You, V. Venugopalan are preparing a manuscript to be titled, “Delta-P1 approximation to radiative transport in the frequency domain.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited