OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 28 — Oct. 1, 2004
  • pp: 5330–5333

Stroke amplifier for deformable mirrors

Robert H. Webb, Marc J. Albanese, Yaopeng Zhou, Thomas Bifano, and Stephen A. Burns  »View Author Affiliations


Applied Optics, Vol. 43, Issue 28, pp. 5330-5333 (2004)
http://dx.doi.org/10.1364/AO.43.005330


View Full Text Article

Enhanced HTML    Acrobat PDF (86 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a simple optical configuration that amplifies the usable stroke of a deformable mirror. By arranging for the wavefront to traverse the deformable mirror more than once, we correct it more than once. The experimental implementation of the idea demonstrates a doubling of 2.0 and 2.04 by two different means.

© 2004 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(220.1000) Optical design and fabrication : Aberration compensation
(230.0230) Optical devices : Optical devices

History
Original Manuscript: January 28, 2004
Revised Manuscript: June 4, 2004
Published: October 1, 2004

Citation
Robert H. Webb, Marc J. Albanese, Yaopeng Zhou, Thomas Bifano, and Stephen A. Burns, "Stroke amplifier for deformable mirrors," Appl. Opt. 43, 5330-5333 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-28-5330


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Roggeman, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 438–505 (1997). [CrossRef]
  2. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245–247 (2000). [CrossRef]
  3. N. Doble, G.-Y. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002). [CrossRef]
  4. E. J. Fernandez, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001). [CrossRef]
  5. L. J. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, Y. Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror,” Appl. Opt. 38, 6019–6026 (1999). [CrossRef]
  6. L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997). [CrossRef] [PubMed]
  7. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  8. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [CrossRef] [PubMed]
  9. L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47(12), 24 (1994). [CrossRef]
  10. P. W. Milonni, “Resource letter: AOA-1: adaptive optics for astronomy,” Am. J. Phys. 67, 476–485 (1999). [CrossRef]
  11. M. P. Rimmer, “Method for evaluating lateral shearing interferograms,” Appl. Opt. 13, 623–629 (1974). [CrossRef] [PubMed]
  12. M. A. Van Dam, R. G. Lane, “Extended analysis of curvature sensing,” J. Opt. Soc. Am. A 19, 1390–1397 (2002). [CrossRef]
  13. R. H. Webb, C. M. Penney, J. Sobiech, P. R. Staver, S. A. Burns, “The SRR: a null-seeking aberrometer,” Appl. Opt. 42, 736–744 (2003). [CrossRef] [PubMed]
  14. B. C. Platt, R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).
  15. S. R. Dale, G. D. Love, R. M. Myers, A. F. Naumov, “Wavefront correction using a self-referencing phase conjugation system based on a Zernike cell,” Opt. Commun. 191, 31–38 (2001). [CrossRef]
  16. T. Shirai, T. H. Barnes, T. G. Haskell, “Adaptive wave-front correction by means of all-optical feedback interferometry,” Opt. Lett. 25, 773–775 (2000). [CrossRef]
  17. J. Porter, A. Guirao, I. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  18. ZEMAX Development Corporation, 4901 Morena Blvd., Suite 207, San Diego, Calif. 92117–7320.
  19. Boston Micromachines Corporation, Watertown, Mass. 02472: Model μDM140 deformable mirror system.
  20. S. Bara, T. Mancebo, E. Moreno-Barriuso, “Positioning tolerances for phase plates compensating aberrations of the human eye,” Appl. Opt. 39, 3413–3420 (2000). [CrossRef]
  21. A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited