OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 34 — Dec. 1, 2004
  • pp: 6270–6277

Efficiency of an Elliptically Shaped X-Ray Mirror

Inna N. Bukreeva, Sultan B. Dabagov, and Stefano Lagomarsino  »View Author Affiliations

Applied Optics, Vol. 43, Issue 34, pp. 6270-6277 (2004)

View Full Text Article

Acrobat PDF (426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Curved reflecting mirrors are widely used as x-ray optical elements for both laboratory and synchrotron radiation sources. In general, the mirror parameters are optimized by numerical simulation. We discuss an analytical approach that is useful for deriving the mirror parameters, including eccentricity, length, angular acceptance, and magnification. We have examined in particular an elliptical surface from which we learned that, given the distance between the foci of the ellipse, the magnification, and the critical angle of total external reflection, it is possible to find analytically the optimal eccentricity that maximizes the angular acceptance and the optimal mirror length. We found that the last-named parameter, in a first approximation, depends only on the distance between the foci of the ellipse and on the magnification factor. We present as well a comparison of optimal parameters obtained with analytical calculation and with ray-tracing simulation that yielded good agreement.

© 2004 Optical Society of America

OCIS Codes
(220.2560) Optical design and fabrication : Propagating methods
(220.4830) Optical design and fabrication : Systems design
(340.0340) X-ray optics : X-ray optics
(340.6720) X-ray optics : Synchrotron radiation
(340.7460) X-ray optics : X-ray microscopy
(340.7470) X-ray optics : X-ray mirrors

Inna N. Bukreeva, Sultan B. Dabagov, and Stefano Lagomarsino, "Efficiency of an Elliptically Shaped X-Ray Mirror," Appl. Opt. 43, 6270-6277 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Lagomarsino and A. Cedola, “X-ray microscopy and nanodiffraction,” in Encyclopedia of Nanoscience and Nanotechnology, H. S. Nalwa, ed. (American Scientific, Stevenson Ranch, Calif., 2004), Vol. 10, pp. 681–710.
  2. W. Yun, ed., X-Ray Microbeam Technology and Applications, Proc. SPIE 2516, 1–242 (1995).
  3. I. McNulty, ed., X-Ray Microfocusing: Applications and Techniques, Proc. SPIE 3449, 1–218 (1998).
  4. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy x-rays,” Nature 387, 49–51 (1996).
  5. B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9, 119–124 (2002).
  6. G. Schmahl and P. Cheng, “X-ray microscopy,” in Handbook on Synchrotron Radiation, S. Ebashi, M. Koch, and E. Rubenstein, eds. (Elsevier, Amsterdam, 1991), Vol. 4.
  7. E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barret, “High-efficiency multilevel zone plates for keV x-rays,” Nature 401, 895–298 (1999).
  8. C. David, B. Kaulich, R. Barret, M. Salomè, and J. Susini, “High-resolution lenses for sub-100 nm x-ray fluorescence microscopy,” Appl. Phys. Lett. 77, 3851–3853 (2000).
  9. V. Aristov, Yu. A. Basov, S. V. Redkin, A. Snigirev, and V. A. Yunkin, “Bragg zone plates for hard x-ray focusing,” Nucl. Instrum. Methods Phys. Res. A 261, 72–74 (1987).
  10. S. M. Kuznetsov, I. I. Snigireva, A. A. Snigirev, P. Engström, and C. Riekel, “Submicrometer fluorescence microprobe based on Bragg–Fresnel optics,” Appl. Phys. Lett. 65, 827–829 (1994).
  11. P. Cloetens, O. Hignette, S. Bohic, E. Pereiro, C. Morawe, and W. Ludwig, “Hard x-ray phase contrast microscopy and fluorescence mapping with KB optics,” presented at the Eighth International Conference on Synchrotron Radiation Instrumentation, San Francisco, Calif., 24–29 August 2003.
  12. O. Hignette, G. Rostaing, P. Cloetens, A. Rommeveaux, W. Ludwig, and A. K. Freund, “Submicron focusing of hard x-rays with reflecting surfaces at the ESRF,” in X-Ray Micro- and Nano-Focusing: Applications and Techniques II, I. McNulty, ed., Proc. SPIE 4499, 105–116 (2001).
  13. A. Iida and K. Girano, “Kirkpatrick–Baez optics for a sub-μm synchrotron x-ray microbeam and its applications to x-ray analysis,” Nucl. Instrum. Methods Phys. Res. B 114, 149–153 (1996).
  14. H. A. Padmore, G. Ackerman, R. Celestre, C. H. Chang, K. Franck, M. Howells, Z. Hussain, S. Irick, S. Locklin, A. A. MacDowell, J. R. Patel, S. Y. Rah, T. R. Renner, and R. Sandler, “Submicron white beam focusing using elliptically bent mirrors,” Synchrotron Radiat. News 10(6), 18–26 (1997).
  15. P. Engström, S. Lasson, A. Rindby, A. Buttkewitz, S. Garbe, G. Gaul, A. Knöchel, and F. Lechtenberg, “A submicron synchrotron x-ray beam generated by capillary optics,” Nucl. Instrum. Methods Phys. Res. A 302, 547–550 (1991).
  16. D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction applications,” Science 263, 201–203 (1994).
  17. W. Jark, A. Cedola, S. Di Fonzo, M. Fiordelisi, S. Lagomarsino, N. V. Kovalenko, and V. A. Chernov, “High gain beam compression in new-generation thin-film x-ray waveguides,” Appl. Phys. Lett. 78, 1192–1194 (2001).
  18. E. Pfeiffer, C. David, M. Burghammer, C. Riekel, and T. Salditt, “Two-dimensional x-ray waveguides and point sources,” Science 12, 230–234 (2002).
  19. Y. P. Feng, S. K. Sinha, H. W. Deckman, J. B. Hastings, and D. P. Siddons, “X-ray Fraunhofer diffraction patterns from a thin-film waveguide,” Appl. Phys. Lett. 67, 3647–3649 (1995).
  20. S. Lagomarsino, W. Jark, S. Di Fonzo, A. Cedola, B. Muller, P. Engstrom, and C. Riekel, “Submicrometer x-ray beam production by a thin film waveguide,” J. Appl. Phys. 79, 4471–4473 (1996).
  21. A. V. Vinogradov, N. N. Zorev, and I. V. Kozhenikov, “On limiting abilities of optics for soft x-ray region,” Proc. P. N. Lebedev Phys. Inst. 176, 195–210 (1986).
  22. A. V. Vinogradov and O. I. Tolstihin, “Concentrators for soft x-ray radiation,” Proc. P. N. Lebedev Phys. Inst. 196, 168–181 (1989).
  23. A. V. Vinogradov, I. A. Brytov, A. Ya. Grudski, M. N. Kogan, I. V. Kozhevnikov, and V. A. Slemzin, Reflective X-Ray Optics (Mashinostroenie, Leningrad, 1989).
  24. I. A. Atryukov, A. V. Vinogradov, and I. V. Kozhevnikov, “Efficiency of grazing incidence optics: the spiral collimator,” Appl. Opt. 30, 4154–4157 (1991).
  25. I. A. Atrukov, I. V. Kozhevnikov, and N. I. Kozhevnikova, “Optimum collimator for proximity x-ray lithography—theoretical analysis,” J. X-Ray Sci. Technol. 8, 199–220 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited