OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 35 — Dec. 10, 2004
  • pp: 6500–6509

Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra

Jonathan T. C. Liu, Jay B. Jeffries, and Ronald K. Hanson  »View Author Affiliations

Applied Optics, Vol. 43, Issue 35, pp. 6500-6509 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method that uses tunable diode lasers is developed for rapid temperature and concentration measurements of gases with highly broadened and congested spectra. Wavelength modulation absorption spectroscopy with 2f detection is utilized, because this derivative method offers benefits in dealing with blended spectral features. The 2f signal depends critically on the modulation depth of the laser a, which is increased to values above those typically achieved when wavelength modulation spectroscopy with diode lasers is performed. The 2f method with large modulation depths is validated by using near-IR diode lasers to probe pressure-broadened water-vapor features in the 1.4-μm region over a range of temperatures from 296 to 800 K and at pressures as high as 20 atm. Modulation depths as high as a = 0.8 cm-1 are attained at modulation frequencies of 50 kHz and measurement bandwidths of 15 kHz. Comparisons of experimental results with 2f simulations, based on the HITRAN spectral database, provide confirmation of the capability of this method for rapid measurements of gas temperature and species concentration.

© 2004 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

Original Manuscript: April 1, 2004
Revised Manuscript: August 20, 2004
Manuscript Accepted: September 9, 2004
Published: December 10, 2004

Jonathan T. C. Liu, Jay B. Jeffries, and Ronald K. Hanson, "Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra," Appl. Opt. 43, 6500-6509 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  2. H. Teichert, T. Fernholtz, V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003). [CrossRef] [PubMed]
  3. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000). [CrossRef]
  4. D. Richter, D. G. Lancaster, F. K. Tittel, “Development of an automated diode laser based multicomponent gas sensor,” Appl. Opt. 39, 4444–4450 (2000). [CrossRef]
  5. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 789–793 (1996). [CrossRef]
  6. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993). [CrossRef] [PubMed]
  7. M. A. Allen, E. R. Furlong, R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hoeinghaus, J. B. Jeffries, eds. (Taylor and Francis, Washington, D.C., 2002), pp. 479–498.
  8. E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control and monitoring using a multiplexed diode-laser sensor system,” Proc. Combust. Inst. 26, 2851–2858 (1996).
  9. D. S. Bomse, A. S. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  10. J. A. Silver, D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999). [CrossRef]
  11. S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode-laser absorption spectroscopy,” J. Vac. Sci. Technol. B 19, 477–484 (2001). [CrossRef]
  12. T. Fernholtz, H. Teichert, V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy in rapidly changing transmission conditions,” Appl. Phys. B 75, 229–236 (2002). [CrossRef]
  13. J. T. C. Liu, J. B. Jeffries, R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503–511 (2004). [CrossRef]
  14. T. P. Jenkins, P. A. DeBarber, M. Oljaca, “A rugged low-cost diode laser sensor for H2O and temperature applied to a spray flame,” in Proceedings of the 41st Aerospace Sciences Meeting and Exhibit of the American Institute of Aeronautics and Astronautics, Reno, Nev., 6–9 January 2003 (American Institute of Aeronautics and Astronautics, Washington, D.C., 2003), paper AIAA 2003-0585.
  15. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef] [PubMed]
  16. T. Aizawa, “Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases,” Appl. Opt. 40, 4894–4903 (2001). [CrossRef]
  17. D. C. Hovde, J. T. Hodges, G. E. Scace, J. A. Silver, “Wavelength-modulation laser hydrometer for ultrasensitive detection of water vapor in semiconductor gases,” Appl. Opt. 40, 829–839 (2001). [CrossRef]
  18. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “A NIR-diode laser spectrometer with closed-loop alignment control for simultaneous in situ detection of multiple species and temperature in a gas-fired power plant for active combustion control purposes,” Proc. Combust. Inst. 28, 423–430 (2000). [CrossRef]
  19. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  20. N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992). [CrossRef] [PubMed]
  21. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994). [CrossRef] [PubMed]
  22. G. V. H. Wilson, “Modulation broadening of NMR and ESR line shapes,” J. Appl. Phys. 34, 3276–3285 (1963). [CrossRef]
  23. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]
  24. H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961). [CrossRef]
  25. P. Kluczynski, O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999). [CrossRef]
  26. S. Schilt, L. Thevenaz, P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728–6738 (2003). [CrossRef] [PubMed]
  27. E. R. Furlong, “Diode-laser absorption spectroscopy applied for the active control of combustion,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1998).
  28. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates of 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  29. Available at http://cfa-www.harvard.edu/hitran/ .
  30. R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750–7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited