OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 4 — Feb. 1, 2004
  • pp: 940–943

Nonstoichiometric silica mask for fabricating reverse proton-exchanged waveguides in lithium niobate crystals

Antonino Parisi, Alfonso C. Cino, Alessandro C. Busacca, and Stefano Riva-Sanseverino  »View Author Affiliations


Applied Optics, Vol. 43, Issue 4, pp. 940-943 (2004)
http://dx.doi.org/10.1364/AO.43.000940


View Full Text Article

Enhanced HTML    Acrobat PDF (175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Producing channel waveguides requires a photolithographic mask, but the standard technique of using thermally evaporated metal films for proton exchange has proved to be unsuitable for withstanding the rather aggressive process of reverse proton exchange. We report the fabrication of a nonstoichiometric silica mask by ion-plating plasma-assisted deposition. This mask is strong enough to resist both direct and reverse proton exchange and is also compatible with anisotropic dry etching for patterning the mask and with electric field poling. Our technique is a practical alternative to the use of SiO2 sputtered masks.

© 2004 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3730) Integrated optics : Lithium niobate
(230.7380) Optical devices : Waveguides, channeled
(310.0310) Thin films : Thin films

History
Original Manuscript: April 16, 2003
Revised Manuscript: September 16, 2003
Published: February 1, 2004

Citation
Antonino Parisi, Alfonso C. Cino, Alessandro C. Busacca, and Stefano Riva-Sanseverino, "Nonstoichiometric silica mask for fabricating reverse proton-exchanged waveguides in lithium niobate crystals," Appl. Opt. 43, 940-943 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-4-940


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. Fejer, “Nonlinear optical frequency conversion: material requirements, engineered materials, and quasi-phasematching,” in Beam Shaping and Control with Nonlinear Optics, F. Kajzar, R. Reinisch, eds. (Plenum, New York, 1998), pp. 375–406.
  2. M. H. Chou, J. Hauden, M. A. Arbore, M. M. Fejer, “1.5-μm band wavelength conversion based on difference frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998). [CrossRef]
  3. A. Di Lallo, C. Conti, A. Cino, G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325 (2001). [CrossRef]
  4. A. Di Lallo, A. Cino, C. Conti, G. Assanto, “Second harmonic generation in reverse proton exchanged lithium niobate waveguides,” Opt. Exp. 8, 232–237 (2001), http://www.opticsexpress.org . [CrossRef]
  5. R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985). [CrossRef]
  6. M. L. Bortz, M. A. Arbore, M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995). [CrossRef] [PubMed]
  7. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002). [CrossRef]
  8. A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002). [CrossRef]
  9. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984).
  10. D. M. Mattox, “Ion plating—past, present and future,” Surf. Coat. Technol. 133-134, 517–521 (2000). [CrossRef]
  11. J. M. E. Harper, J. J. Cuomo, H. T. G. Hentzell, “Quantitative ion beam process for the deposition of compound thin films,” Appl. Phys. Lett. 43, 547–549 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited