OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 6 — Feb. 20, 2004
  • pp: 1412–1415

Polarization response of two-dimensional metallic photonic crystals studied by terahertz time-domain spectroscopy

Fumiaki Miyamaru and Masanori Hangyo  »View Author Affiliations

Applied Optics, Vol. 43, Issue 6, pp. 1412-1415 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (176 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarization characteristics of a terahertz (THz) wave transmitted through two-dimensional (2-D) metallic photonic crystals (MPCs) are investigated. The 2-D MPCs studied in this paper are metal slabs perforated periodically with circular holes. We measured the polarization characteristics of the THz wave using a THz time-domain spectroscopic system with wire grid polarizers in the time and frequency domains. The linearly polarized incident THz wave changes its polarization direction and becomes elliptic after it transmits through the sample. This phenomenon is highly sensitive to the incident angle. It is shown that the frequency range at which the polarization rotation occurs is related to the lattice constant of a photonic crystal, indicating the importance of photonic band modes of the 2-D MPC in the mechanism of the phenomenon.

© 2004 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

Original Manuscript: July 1, 2003
Revised Manuscript: October 14, 2003
Published: February 20, 2004

Fumiaki Miyamaru and Masanori Hangyo, "Polarization response of two-dimensional metallic photonic crystals studied by terahertz time-domain spectroscopy," Appl. Opt. 43, 1412-1415 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full thee-dimensional photonic bandgap crystals at near-infrared,” Science 289, 604–606 (2000). [CrossRef] [PubMed]
  2. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001). [CrossRef] [PubMed]
  3. A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003). [CrossRef] [PubMed]
  4. S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000). [CrossRef] [PubMed]
  5. D. F. Sievenpiper, M. E. Sickmiller, E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996). [CrossRef] [PubMed]
  6. J. A. Oswald, B.-I. Wu, K. A. McIntosh, L. J. Mahoney, S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000). [CrossRef]
  7. J. S. McCalmont, M. M. Sigalas, G. Tuttle, K.-M. Ho, C. M. Soukolis, “A layer-by-layer metallic photonic band-gap structure,” Appl. Phys. Lett. 68, 2759–2761 (1996). [CrossRef]
  8. E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Defect structures in metallic photonic crystals,” Appl. Phys. Lett. 69, 3797–3799 (1996). [CrossRef]
  9. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Blswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002). [CrossRef] [PubMed]
  10. T. K. Wu, Frequency Selective Surface and Grid Array (Wiley Interscience, New York, 1995).
  11. C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. MTT-21, 1–6 (1973). [CrossRef]
  12. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  13. L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef] [PubMed]
  14. F. Miyamaru, T. Kondo, T. Nagashima, M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003). [CrossRef]
  15. F. Miyamaru, M. Hangyo, “Finite size effect of transmission property for two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett., submitted for publication.
  16. C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000). [CrossRef]
  17. R. M. A. Azzam, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  18. J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  19. H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 11 of Springer Tracts in Modern Physics, G. Hohler, ed. (Springer-Verlag, Berlin, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited