## Computational calibration method for optical tomography

Applied Optics, Vol. 44, Issue 10, pp. 1879-1888 (2005)

http://dx.doi.org/10.1364/AO.44.001879

Acrobat PDF (924 KB)

### Abstract

We propose a computational calibration method for optical tomography. The model of the calibration scheme is based on the rotation symmetry of source and detector positions in the measurement setup. The relative amplitude losses and phase shifts at the optic fibers are modeled by complex-valued coupling coefficients. The coupling coefficients can be estimated when optical tomography data from a homogeneous and isotropic object are given. Once these coupling coefficients have been estimated, any data measured with the same measurement setup can be corrected for the relative variation in the data due to source and detector losses. The final calibration of the data for the source and detector losses and the source calibration between the data and the forward model are obtained as part of the initial estimation for reconstruction. The calibration method was tested with simulations and measurements. The results show that the coupling coefficients of the sources and detectors can be estimated with good accuracy. Furthermore, the results show that the method can significantly improve the quality of reconstructed images.

© 2005 Optical Society of America

**OCIS Codes**

(100.3190) Image processing : Inverse problems

(170.5280) Medical optics and biotechnology : Photon migration

(170.6960) Medical optics and biotechnology : Tomography

**Citation**

Tanja Tarvainen, Ville Kolehmainen, Marko Vauhkonen, Antti Vanne, Adam P. Gibson, Martin Schweiger, Simon R. Arridge, and Jari P. Kaipio, "Computational calibration method for optical tomography," Appl. Opt. **44**, 1879-1888 (2005)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-10-1879

Sort: Year | Journal | Reset

### References

- B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).
- J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, "Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging," Med. Phys. 30, 235-247 (2003).
- J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, "Three-dimensional optical tomography of the premature infant brain," Phys. Med. Biol. 47, 4155-4166 (2002).
- M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160‐ms temporal resolution," Opt. Express 6, 49-57 (2000), http://www.opticsexpress.org.
- A. V. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001), http://www.opticsexpress.org.
- S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, and S. R. Arridge, "Time-series estimation of biological factors in optical diffusion tomography," Phys. Med. Biol. 48, 1491-1504 (2003).
- T. Noponen, M. Paloheimo, P. Meriläinen, T. Kajava, K. Kotilahti, I. Nissilä, and T. Katila, "Multi-channel near-infrared spectroscopy on the human forehead during hypo- and hypercapnia," in Biomedical Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper WF8.
- R. Williams and M. Beck, eds., Process Tomography, Principles, Techniques and Applications (Butterworth-Heinemann, Oxford, UK, 1995).
- E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, "Calibration techniques and datatype extraction for time-resolved optical tomography," Rev. Sci. Instrum. 71, 3415-3427 (2000).
- I. Nissilä, K. Kotilahti, K. Fallström, and T. Katila, "Instrumentation for the accurate measurement of phase and amplitude in optical tomography," Rev. Sci. Instrum. 73, 3306-3312 (2002).
- T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, "A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo," Rev. Sci. Instrum. 72, 1817-1824 (2001).
- F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delby, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000).
- D. A. Boas, T. Gaudette, and S. R. Arridge, "Simultaneous imaging and optode calibration with diffuse optical tomography," Opt. Express 8, 263-270 (2001), http://www.opticsexpress.org.
- J. J. Stott, J. P. Culver, S. R. Arridge, and D. A. Boas, "Optode positional calibration in diffuse optical tomography," Appl. Opt. 42, 3154-3162 (2003).
- S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb, "Source-detector calibration in three-dimensional Bayesian optical diffusion tomography," J. Opt. Soc. Am. A 19, 1983-1993 (2002).
- T. O. McBride, B. W. Pogue, U. L. Österberg, and K. D. Paulsen, "Strategies for absolute calibration of near infrared tomographic tissue imaging," in Oxygen Transport to Tissue XXIV, J.F.Dunn and H.M.Swartz, eds. (Kluwer Academic-Plenum, New York, 2003), pp. 85-99.
- C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, and R. L. Barbour, "Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography," Appl. Opt. 39, 6466-6486 (2000).
- D. W. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," J. Soc. Ind. Appl. Math. 11, 431-441 (1963).
- M. Schweiger and S. R. Arridge, "The finite-element method for the propagation of light in scattering media: frequency domain case," Med. Phys. 24, 895-902 (1997).
- J. Heino and E. Somersalo, "Estimation of optical absorption in anisotropic background," Inverse Probl. 18, 559-573 (2002).
- M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
- S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999).
- S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
- V. Kolehmainen, "Novel approaches to image reconstruction in diffusion tomography," Ph.D. thesis (University of Kuopio, Kuopio, Finland, 2001).
- S. R. Arridge and M. Schweiger, "The UCL optical tomography software system (TOAST)," available at http://www.medphys.ucl.ac.uk/~martins/toast/index.html.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.