OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 13 — May. 1, 2005
  • pp: 2673–2677

Thermal diffusivity, specific heat, thermal conductivity, coefficient of thermal expansion, and refractive-index change with temperature in AgGaSe2

R. L. Aggarwal and T. Y. Fan  »View Author Affiliations

Applied Optics, Vol. 44, Issue 13, pp. 2673-2677 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (98 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurement of the key thermo-optic properties of AgGaSe2 in the temperature range below 300 K is reported. Values of these properties on cooling become favorable for the higher average-power operation of nonlinear optical frequency converters using this material.

© 2005 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.4670) Materials : Optical materials

Original Manuscript: October 4, 2004
Revised Manuscript: November 19, 2004
Manuscript Accepted: November 22, 2004
Published: May 1, 2005

R. L. Aggarwal and T. Y. Fan, "Thermal diffusivity, specific heat, thermal conductivity, coefficient of thermal expansion, and refractive-index change with temperature in AgGaSe2," Appl. Opt. 44, 2673-2677 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. W. Iseler, “Thermal expansion and seeded Bridgman growth of AgGaSe2,” J. Cryst. Growth 41, 146–150 (1977). [CrossRef]
  2. N. P. Barnes, D. J. Gettemy, J. R. Hietanen, R. A. Iannini, “Parametric amplification in AgGaSe2,” Appl. Opt. 28, 5162–5168 (1989). [CrossRef] [PubMed]
  3. K. L. Schepler, M. D. Turner, P. A. Budni, “High-average-power nonlinear frequency conversion in AgGaSe2,” in Advanced Solid-State Lasers, G. Dubei, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 325–328.
  4. G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second-harmonic generation in AgGaSe2 crystal,” J. Appl. Phys. 74, 5282–5284 (1993). [CrossRef]
  5. C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico, G. C. Catella, “Thermal lensing in silver gallium selenide parametric oscillator crystals,” Appl. Opt. 33, 3192–3197 (1994). [CrossRef] [PubMed]
  6. G. C. Catella, D. S. Burlage, J. D. Beasley, C. L. Marquardt, “Modeling and comparison with recent lensing experiments in AgGaSe2 and ZnGeP2,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion,” N. Peygambar-ian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 272–281 (1994). [CrossRef]
  7. N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976). [CrossRef]
  8. G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2temperature-dependent nonlinear devices,” J. Phys. D. 27, 231–234 (1994). [CrossRef]
  9. See, for example, C. Kittel, Introduction to Solid State Physics, 2nd ed. (Wiley, New York, 1960).
  10. R. C. Campbell, S. E. Smith, “Flash diffusivity method,” Electron. Cooling 8, 34–40 (2002).
  11. Test Method E1461-01, “Standard test method for thermal diffusivity by the flash method,” in Annual Book of ASTM Standards (American Society for Testing Materials, Philadelphia, Pa., 2001), Vol. 14.02, pp. 1–13.
  12. W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32, 1679–1684 (1961). [CrossRef]
  13. J. A. Koski, “Improved data reduction methods for laser pulse diffusivity determination with the use of minicomputers,” in Proceedings of the Eighth Symposium on Thermophysical Properties, Vol. II, J. V. Sengers, ed. (American Institute of Physics, New York, 1981), pp. 94–103.
  14. J. D. Beasley, “Thermal conductivities of some novel nonlinear optical materials,” Appl. Opt. 33, 1000–1003 (1994). [CrossRef] [PubMed]
  15. E. G. Wolff, R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56, 1313–1319 (1985). [CrossRef]
  16. I. V. Bodnar, N. S. Orlova, “X-ray evidence on thermal-expansion anisotropy in AgGaSe2 at 80–650 K,” Inorg. Mater. 23, 680–682 (1987).
  17. J. D. James, J. A. Spittle, S. G. R. Brown, R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12, R1–R15 (2001). [CrossRef]
  18. D. Yang, M. E. Thomas, W. J. Trof, S. G. Kaplan, “Infrared refractive index measurements using a new method,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 42–52 (2000). [CrossRef]
  19. E. Tanaka, K. Kato, “Thermo-optic dispersion formula of AgGaSe2and its practical applications,” Appl. Opt. 37, 561–564 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited