OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 3912–3924

Modeling the instrument line shape of Fourier-transform spectrometers within the framework of partial coherence

Jérôme Genest and Pierre Tremblay  »View Author Affiliations


Applied Optics, Vol. 44, Issue 19, pp. 3912-3924 (2005)
http://dx.doi.org/10.1364/AO.44.003912


View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The instrument line shape (ILS) of Fourier-transform spectrometers is modeled within a framework that enables us to take into account the partial coherence of optical fields. The cross spectral density and the angular coherence functions are used to develop a global ILS model including all possible geometric defects that can be introduced by a realistic two-beam interferometer. Tilt and shear no longer only reduce the modulation efficiency but are presented as contributors to the ILS. The case of an incoherent secondary planar source is covered and agrees with previously known results. However, it shows a coupling among tilt, shear, and optical path difference (OPD). A quasi-coherent source is also studied. Differences between the incoherent and the quasi-coherent cases are highlighted. The relative localization of the reference laser beam in the interferometer is shown to be of significance to provide a sampling scale that minimizes the OPD, or phase, induced by angular misalignment.

© 2005 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

History
Original Manuscript: November 17, 2004
Revised Manuscript: February 15, 2005
Manuscript Accepted: February 15, 2005
Published: July 1, 2005

Citation
Jérôme Genest and Pierre Tremblay, "Modeling the instrument line shape of Fourier-transform spectrometers within the framework of partial coherence," Appl. Opt. 44, 3912-3924 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-19-3912

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited