OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 3912–3924

Modeling the instrument line shape of Fourier-transform spectrometers within the framework of partial coherence

Jérôme Genest and Pierre Tremblay  »View Author Affiliations

Applied Optics, Vol. 44, Issue 19, pp. 3912-3924 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The instrument line shape (ILS) of Fourier-transform spectrometers is modeled within a framework that enables us to take into account the partial coherence of optical fields. The cross spectral density and the angular coherence functions are used to develop a global ILS model including all possible geometric defects that can be introduced by a realistic two-beam interferometer. Tilt and shear no longer only reduce the modulation efficiency but are presented as contributors to the ILS. The case of an incoherent secondary planar source is covered and agrees with previously known results. However, it shows a coupling among tilt, shear, and optical path difference (OPD). A quasi-coherent source is also studied. Differences between the incoherent and the quasi-coherent cases are highlighted. The relative localization of the reference laser beam in the interferometer is shown to be of significance to provide a sampling scale that minimizes the OPD, or phase, induced by angular misalignment.

© 2005 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Original Manuscript: November 17, 2004
Revised Manuscript: February 15, 2005
Manuscript Accepted: February 15, 2005
Published: July 1, 2005

Jérôme Genest and Pierre Tremblay, "Modeling the instrument line shape of Fourier-transform spectrometers within the framework of partial coherence," Appl. Opt. 44, 3912-3924 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. D. Stumpf, J. A. Overbeck, “CrIS optical system design,” in Infrared Spaceborne Remote Sensing IX, M. Strojnik, B. F. Andresen, eds., Proc. SPIE4486, 437–444 (2002). [CrossRef]
  2. M.-A. Soucy, F. Châteauneuf, C. Deutsch, J. Giroux, “Status of the ACE-FTS instrument development,” in Proceedings of the International Symposium on Spectral Sensing Research (ISSSR), J. Ferriter, D. Faubert, eds. (Science and Technology Corp., 2001).
  3. A. J. Villemaire, S. Fortin, J. Giroux, T. Smithson, R. J. Oermann, “Imaging Fourier transform spectrometer,” in Aerosense ’95 Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 387–397 (1995). [CrossRef]
  4. C. L. Bennet, M. R. Carter, D. J. Fields, “Hyperspectral imaging in the infrared using LIFTIRS,” in Infrared Technology XXI, B. F. Andresen, M. Strojnik, eds., Proc. SPIE2552, 274–283 (1995). [CrossRef]
  5. W. Posselt, J.-P. Maillard, G. Wright, “NIRCAM-IFTS: imaging Fourier transform spectrometer for NGST,” in Next Generation Space Telescope Science and Technology, Vol. 27 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, 1999), pp. 303–310.
  6. C. D. Boone, S. D. McLeod, P. F. Bernath, “Apodization effects in the retrieval of volume mixing ratio profiles,” Appl. Opt. 41, 1029–1034 (2002). [CrossRef] [PubMed]
  7. K. W. Bowman, H. M. Worden, R. Beer, “Instrument line-shape modeling and correction for off-axis detectors in Fourier-transform spectrometry,” Appl. Opt. 39, 3765–3773 (2000). [CrossRef]
  8. F. Bouffard, P. Tremblay, R. Desbiens, J.-P. Bouchard, “Synthetic spectra of Fourier transform spectrometers using analytically modeled instrument line shape inclusion,” in Proceedings of the International Symposium on Spectral Sensing Research (ISSSR), J. Ferriter, D. Faubert, eds.(Science and Technology Corp., 2001), pp. 326–335.
  9. R. Desbiens, P. Tremblay, J. Genest, “Matrix algorithm for integration and inversion of instrument line shape,” in Fourier Transform Spectroscopy, D. Hausamann, R. McKellar, eds., Vol. 84 of 2003 OSA Trends in Optics and Photonics (Optical Society of America, 2003), pp. 42–44.
  10. L. Mandel, E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965). [CrossRef]
  11. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995). [CrossRef]
  12. ABB Bomem Inc., The DA8 series FT-IR spectrometers.Commercial brochure and instrument specification (2001).
  13. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, 1991).
  14. C. S. Williams, “Mirror misalignment in Fourier spectroscopy using a Michelson interferometer with circular aperture,” Appl. Opt. 5, 1084–1085 (1966). [CrossRef] [PubMed]
  15. L. W. Kunz, D. Goorvitch, “Combined effects of a converging beam of light and mirror misalignment in Michelson interferometry,” Appl. Opt. 13, 1077–1079 (1974). [CrossRef] [PubMed]
  16. J. W. Brault, “Fourier transform spectrometry,” in High Resolution in Astronomy, Proceedings of the 15th Advanced Course of the Swiss Society of Astronomy and Astrophysics, A. O. Benz, M. C. E. Huber, M. Mayor, eds.(Swiss Society of Astronomy and Astrophysics, 1985), pp. 1–61.
  17. M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers,” Rev. Sci. Instrum. 66, 4763–4797 (1995). [CrossRef]
  18. J. Genest, P. Tremblay, “General analytic solutions for the ILS of nonuniformly illuminated off-axis detectors,” in Fourier Transform Spectroscopy: New Methods and Applications (Optical Society of America, 1999), pp. 58–60.
  19. R. Desbiens, P. Tremblay, “Families of optimal parametric windows having arbitrary secondary lobe profile,” in Fourier Transform Spectroscopy, Vol. 51 of 2001 OSA Technical Digest Series (Optical Society of America, 2001), pp. 41–43.
  20. K. Tenjimbayashi, “Technique of recording and judging the sign of tilt in one interferogram,” in International Conference on Optical Fabrication and Testing, T. Kasia, ed., Proc. SPIE2576, 326–334 (1995). [CrossRef]
  21. J. Genest, P. Tremblay, A. Villemaire, “Throughput of tilted interferometers,” Appl. Opt. 37, 4819–4822 (1998). [CrossRef]
  22. R. Desbiens, J. Genest, P. Tremblay, “Radiometry in line-shape modeling of Fourier-transform spectrometers,” Appl. Opt. 41, 1424–1432 (2002). [CrossRef] [PubMed]
  23. J. Connes, “Domaine d’utilisation de la méthode par transformée de Fourier,” J. Phys. Radium 19, 197–208 (1958). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited