OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 4148–4156

Polarization structure of lidar signals reflected from ice crystal clouds

Georgii M. Krekov, Margarita M. Krekova, Dmitrii N. Romashov, and Vitalii S. Shamanaev  »View Author Affiliations

Applied Optics, Vol. 44, Issue 19, pp. 4148-4156 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization characteristics of signals of a monostatic lidar intended for sensing of homogeneous ice crystal clouds are calculated by the Monte Carlo method. Clouds are modeled as monodisperse ensembles of randomly oriented hexagonal ice crystals. The polarization state of multiply scattered lidar signal components is analyzed for different scattering orders depending on the crystal shapes and sizes as well as on the optical and geometrical conditions of observation. Light-scattering phase matrices (SPMs), calculated by the beam splitting method (BSM), are used as input data for solving the vector radiative transfer equation. The principles of the BSM method are briefly described, and the SPM components are given for hexagonal ice plates and columns of different sizes and linearly polarized incident radiation with the wavelength λ = 0.55 µm.

© 2005 Optical Society of America

OCIS Codes
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering

Original Manuscript: April 12, 2004
Manuscript Accepted: May 12, 2004
Published: July 1, 2005

Georgii M. Krekov, Margarita M. Krekova, Dmitrii N. Romashov, and Vitalii S. Shamanaev, "Polarization structure of lidar signals reflected from ice crystal clouds," Appl. Opt. 44, 4148-4156 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Mazin, A. Kh. Khrgian, I. M. Imyanitov, Clouds and the Cloudy Atmosphere (Gidrometeoizdat, 1989).
  2. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
  3. V. P. Dugin, S. O. Mirumyants, “Light scattering matrices of artificial crystal clouds,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 12, 988–991 (1976).
  4. O. A. Volkovitskii, L. N. Pavlova, A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, 1984).
  5. K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase, and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979). [CrossRef]
  6. A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984). [CrossRef]
  7. K. Sassen, O. C. Starr, T. Uttal, “Mesoscale and microscale of cirrus clouds: three case studies,” J. Atmos. Sci. 46, 371–396 (1989). [CrossRef]
  8. A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical pacific warm pool: microphysical interpretations from Cepex and from Kwajalein, Marshall Islands,” J. Atmos. Sci. 53, 2424–2451 (1996). [CrossRef]
  9. V. Noel, H. Chepfer, G. Ledanois, A. Delaval, H. Flamant, “Classification of particle effective shape ratio in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41, 4225–4256 (2002). [CrossRef]
  10. P. N. Fransis, “Some aircraft observations of the scattering properties of ice crystals,” J. Atmos. Sci. 52, 1142–1154 (1995). [CrossRef]
  11. Yu. S. Balin, S. V. Samoilova, M. M. Krekova, D. W. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6385–6373 (1999). [CrossRef]
  12. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s lidar in space technology experiment,” Proc. IEEE 84, 164–180 (1996). [CrossRef]
  13. “Fire Intensive field observation II,” J. Atmos. Sci. 52, 4041–4392 (1995). [CrossRef]
  14. M. I. Mishchenko, J. W. Howenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles. Theory, Measurement, and Applications (Academic, 1999).
  15. P. Yang, K. N. Liou, W. P. Arnott, “Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds,” J. Geophys. Res. D102, 21825–21835 (1997). [CrossRef]
  16. G. G. Macke, K. Sassen, S. Kinne, T. A. Ackermann, “An examination of cirrus cloud characteristics using data from millimeter-wave radar and lidar,” Geophys. Res. Lett. 25, 1133–1136 (1998). [CrossRef]
  17. W. N. Chen, C. W. Chiang, J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470–6476 (2002). [CrossRef] [PubMed]
  18. B. V. Kaul, I. V. Samokhvalov, “Multiple scattering noise in lidar measurements of matrices of light backscattering by crystal clouds,” Opt. Atmos. Okeana 12, 401–405 (1999).
  19. P. Bruscaglioni, G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M. Nieto Vesparions, J. C. Dainty, eds. (Elsevier, 1990).
  20. P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992). [CrossRef]
  21. C. M. R. Platt, “Remote sensing of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981). [CrossRef]
  22. J. Pelon, V. Trouillet, C. Flamant, P. H. Flamant, R. Valentin, “French contribution to E-LITE’94: comparative measurements with the airborne backscatter lidar LEANARDE-1. The European LITE correlative measurements campaign,” in Final Results Workshop Proceedings9–10 November 1995 (IROE-CNR, 1995), pp. 31–36.
  23. L. R. Bissonette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995). [CrossRef]
  24. G. M. Krekov, M. M. Krekova, I. V. Samokhvalov, “Structure of spaceborne lidar signals in stratus cloud sounding,” Issled. Zemli Kosm. 6, 77–83 (1986).
  25. V. E. Zuev, G. M. Krekov, M. M. Krekova, G. A. Titov, “Mean characteristics of lidar signals from broken clouds,” Appl. Opt. 26, 3018–3025 (1987). [CrossRef] [PubMed]
  26. G. H. Ruppersberg, M. Kerscher, M. Noormohammedian, U. G. Oppel, W. Renger, “The influence of multiple scattering of lidar returns by cirrus clouds and effective inversion algorithm for the extinction coefficient,” Beitr. Phys. Atmos. 70, 93–105 (1997).
  27. E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analitical solution to lidar return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–353 (1995). [CrossRef]
  28. L. R. Bissonette, “Multiple scattering lidar equation,” Appl. Opt. 35, 6449–6463 (1996). [CrossRef]
  29. L. R. Bissonette, G. Roy, L. Poutier, S. G. Cober, G. A. Isaac, “Multiple scattering lidar method: test on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002). [CrossRef]
  30. V. V. Veretennikov, A. I. Abramochkin, S. A. Abramochkin, “Experimental research of stratocumulus cloudiness above city of Tomsk with changeable field-of-view lidar,” in 12th International Workshop on Lidar Multiple Scattering Experiments, C. Werner, U. G. Oppel, T. Rother, eds., Proc. SPIE5059, 179–188 (2003). [CrossRef]
  31. A. Mannani, C. Flesia, P. Bruskaglioni, A. Ismaelli, “Multiple scattering from Chebyshev particles: Monte Carlo simulations for backscattering in ladar geometry,” Appl. Opt. 35, 7151–7164 (1996). [CrossRef]
  32. G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signal,” Appl. Opt. 37, 1596–1601 (1998). [CrossRef]
  33. A. P. Vasil’kov, T. V. Kondranin, E. V. Myasnikov, “Polarization characteristics of a backscattered signal in pulsed sensing of the ocean by a narrow light beam,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 24, 873–881 (1988).
  34. V. E. Zuev, G. M. Krekov, M. M. Krekova, “Polarization structure of a signal backscattered from water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 19, 595–602 (1983).
  35. G. M. Krekov, M. M. Krekova, “Polarization structure of multiply scattered component in lidar return signals,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 20, 969–974 (1984).
  36. R. J. Perry, A. J. Hunt, D. R. Huffman, “Experimental determinations of Mueller scattering matrices for nonspherical particles,” Appl. Opt. 17, 2700–2710 (1978). [CrossRef] [PubMed]
  37. S. Reichardt, J. Reichardt, “Effect of multiple scattering on depolarization measurements with spaceborne lidars,” Appl. Opt. 42, 3620–3633 (2003). [CrossRef] [PubMed]
  38. S. V. Samoilova, Yu. S. Balin, “Spaceborne polarization lidar for determining the optical parameters of cloudiness,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 37, 201–212 (2001).
  39. D. N. Romashov, “Backscattering phase matrix for monodispersed ensembles of ice crystals,” Opt. Atmos. Okeana 12, 392–400 (1999).
  40. D. N. Romashov, “Light scattering by hexagonal ice crystals,” Opt. Atmos. Okeana 14, 116–124 (2001).
  41. D. N. Romashov, “Reflection properties of hexagonal ice crystals,” Opt. Atmos. Okeana 12, 1077–1080 (1999).
  42. Q. Gai, K. N. Liou, “Polarized light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982). [CrossRef]
  43. A. A. Popov, “Scattering of a plane electromagnetic wave by a translucent flat polyhedron of arbitrary shape,” Deposited at VINITI, No. 8006-84 (1984), 55 pp., http://www.VINITI.ru .
  44. P. Yang, K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). [CrossRef] [PubMed]
  45. Y. Takano, K. Jayaweera, “Scattering phase matrix for hexagonal ice crystals computed from ray optics,” Appl. Opt. 24, 3254–3263 (1985). [CrossRef] [PubMed]
  46. A. G. Petrushin, “Absorption and scattering of optical radiation by a crystal cloud,” in Fifth International Symposium on Atmospheric and Ocean Optics, V. E. Zuev, G. G. Matvienko, eds., Proc. SPIE3583, 147–154 (1998). [CrossRef]
  47. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989). [CrossRef]
  48. H. C. Van de Hulst, Light scattering by Small Particles (Wiley, 1957).
  49. M. I. Mishchenko, A. Macke, “Depolarization of light backscattering by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995). [CrossRef] [PubMed]
  50. A. J. Heymsfield, G. M. McFarquhar, “High albedos of cirrus in the tropical Pacific warm pool: microphysical interpretation from CEPEX and from Kwajalein, Marshall Islands,” J. Atmos Sci. 53, 2424–2451 (1996). [CrossRef]
  51. C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989). [CrossRef]
  52. A. Macke, P. N. Francis, G. M. McFarquhar, S. Kinne, “The role of ice particle shapes and size distributions in single scattering properties of cirrus clouds,” J. Atmos. Sci. 55, 2874–2883 (1998). [CrossRef]
  53. C. M. R. Platt, S. A. Yang, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, J. N. Churnside, “The optical properties of equatorial cirrus observations in the ARM pilot radiation observation experiment,” J. Atmos. Sci. 55, 1977–1996 (1998). [CrossRef]
  54. M. Del Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont D’Urwille (Antarctica) 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993). [CrossRef]
  55. G. I. Marchuk, G. M. Mikchailov, T. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, E. P. Elepov, Monte Carlo Method in Atmospheric Optics, Springer Series in Solid-State Sciences, G. I. Marchuk, ed. (Springer-Verlag, 1980), Chap. 5. [CrossRef]
  56. V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods of increasing the efficiency of numerical experiments on laser sensing of the atmospheric aerosol,” in Problems of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Publishing House of the Siberian Branch of the Russian Academy of Sciences, 1975).
  57. I. V. Samokhvalov, V. S. Shamanaev, “Lidar diagnostics of water and crystal clouds,” Izv. Akad. Nauk SSSR Ser. Fiz. Atmos. Okeana 18, 1050–1056 (1982).
  58. K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited