OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 20 — Jul. 10, 2005
  • pp: 4272–4280

Dispersion compensation in high-speed optical coherence tomography by acousto-optic modulation

Tuqiang Xie, Zhenguo Wang, and Yingtian Pan  »View Author Affiliations


Applied Optics, Vol. 44, Issue 20, pp. 4272-4280 (2005)
http://dx.doi.org/10.1364/AO.44.004272


View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report studies of the analyses of and compensation for group dispersion to improve the axial resolution of high-speed optical coherence tomography (OCT) by acousto-optic modulation (AOM). Theoretical modeling and experiments reveal that the high-order group dispersion induced by acousto-optic crystals broadens the measured coherence length (Lc) and thus degrades the axial resolution of OCT imaging. Based on our experimental studies, we can compensate for the dispersion to less than 50% broadening of the source Lc by adjusting the grating-lens-based optical delay in the reference arm and can further eliminate it by inserting like acousto-optic crystals in the sample arm of the OCT system. The results demonstrate that this AOM-mediated OCT system permits high-performance OCT imaging at A-scan rates of as much as 4 kHz by use of a resonant scanner. Because of its ultrastable direct frequency modulation, this AOM-mediated OCT system can potentially improve the performance of high-speed Doppler OCT techniques.

© 2005 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(230.1040) Optical devices : Acousto-optical devices
(260.2030) Physical optics : Dispersion

History
Original Manuscript: October 5, 2004
Revised Manuscript: February 17, 2005
Manuscript Accepted: February 20, 2005
Published: July 10, 2005

Citation
Tuqiang Xie, Zhenguo Wang, and Yingtian Pan, "Dispersion compensation in high-speed optical coherence tomography by acousto-optic modulation," Appl. Opt. 44, 4272-4280 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-20-4272


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. M. Rollins, J. Izatt, M. Kulkarni, S. Yazdanfar, R. Ungarunyawee, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998). [CrossRef] [PubMed]
  3. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  4. J. J. Armstrong, M. S. Leigh, I. D. Walton, A. V. Zvyagin, S. A. Alexandrov, S. Schwer, D. D. Sampson, “In vivo size and shape measurement of the human upper airway using endoscopic long-range optical coherence tomography,” Opt. Express 11, 1817–1826 (2003). [CrossRef] [PubMed]
  5. T. Xie, H. Xie, G. K. Fedder, Y. Pan, “Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers,” Appl. Opt. 42, 6422–6426 (2003). [CrossRef] [PubMed]
  6. G. Yao, L. Wang, “Propagation of polarized light in turbid media: simulated animation sequences,” Opt. Express 7, 198–203 (2000). [CrossRef] [PubMed]
  7. V. Westphal, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002). [CrossRef]
  8. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002). [CrossRef]
  9. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29, 171–173 (2004). [CrossRef] [PubMed]
  10. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999). [CrossRef]
  11. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wandsworth, U. Bunting, D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:glass laser and nonlinear fiber,” Opt. Express 11, 3290–3297 (2003). [CrossRef] [PubMed]
  12. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, A. Stingl, “Compact, low-cost Ti:Al2O3laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 28, 905–907 (2003). [CrossRef] [PubMed]
  13. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express 11, 3598–3604 (2003).
  14. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18, 558–560 (1993). [CrossRef] [PubMed]
  15. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997). [CrossRef]
  16. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000). [CrossRef]
  17. T. Xie, Z. Wang, Y. Pan, “High-speed optical coherence tomography using fiber-optic acousto-optic phase modulation,” Opt. Express 11, 3210–3219 (2003). [CrossRef] [PubMed]
  18. M. R. Fetterman, J. C. Davis, H.-S. Tan, W. Yang, D. Goswami, J.-K. Rhee, W. S. Warren, “Fast-frequency-hopping modulation and detection demonstration,” J. Opt. Soc. Am. B 18, 1372–1376 (2001). [CrossRef]
  19. C. K. Hitzenberger, P. Trost, P.-W. Lo, Q. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761 (2003). [CrossRef] [PubMed]
  20. Y. T. Pan, R. Bimgruber, R. Rosperich, R. Engelhardt, “Optical coherence tomography in turbid tissues: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995). [CrossRef] [PubMed]
  21. E. D. J. Smith, A. V. Zvyagin, D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Opt. Lett. 27, 1998–2000 (2002). [CrossRef]
  22. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969). [CrossRef]
  23. T. Xie, M. L. Zeidel, Y. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Express 10, 1431–1443 (2002). [CrossRef] [PubMed]
  24. Y. Pan, T. Xie, S. Bastacky, S. Meyers, M. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett. 28, 2485–2487 (2003). [CrossRef] [PubMed]
  25. V. Westphal, S. Yazdanfar, A. Rollins, J. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited