OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 23 — Aug. 10, 2005
  • pp: 4946–4952

Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence

Yamaç Dikmelik and Frederic M. Davidson  »View Author Affiliations

Applied Optics, Vol. 44, Issue 23, pp. 4946-4952 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (555 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-speed free-space optical communication systems have recently used fiber-optic components. The received laser beam in such a system must be coupled into a single-mode fiber at the input of the receiver module. However, propagation through atmospheric turbulence degrades the spatial coherence of a laser beam and limits the fiber-coupling efficiency. We numerically evaluate the fiber-coupling efficiency for laser light distorted by atmospheric turbulence. We also investigate the use of a coherent fiber array as a receiver structure and find that a coherent fiber array that consists of seven subapertures would significantly increase the fiber-coupling efficiency.

© 2005 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4510) Fiber optics and optical communications : Optical communications

Original Manuscript: September 20, 2004
Revised Manuscript: January 9, 2005
Manuscript Accepted: February 18, 2005
Published: August 10, 2005

Yamaç Dikmelik and Frederic M. Davidson, "Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence," Appl. Opt. 44, 4946-4952 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Nykolak, P. F. Szajowski, G. Tourgee, H. Presby, “2.5 Gbit/s free space optical link over 4.4 km,” Electron. Lett. 35, 578–579 (1999). [CrossRef]
  2. D. Y. Song, Y. S. Hurh, J. W. Cho, J. H. Lim, D. W. Lee, J. S. Lee, Y. Chung, “4 × 10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing,” Opt. Express 7, 280–284 (2000). [CrossRef] [PubMed]
  3. P. J. Winzer, W. R. Leeb, “Fiber coupling efficiency for random light and its applications to lidar,” Opt. Lett. 23, 986–988 (1998). [CrossRef]
  4. W. R. Leeb, P. J. Winzer, K. H. Kudielka, “Aperture dependence of the mixing efficiency, the signal-to-noise ratio, and the speckle number in coherent lidar receivers,” Appl. Opt. 37, 3143–3148 (1998). [CrossRef]
  5. A. Belmonte, “Analyzing the efficiency of a practical heterodyne lidar in the turbulent atmosphere: telescope parameters,” Opt. Express 11, 2041–2046 (2003). [CrossRef] [PubMed]
  6. A. Belmonte, B. J. Rye, “Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems,” Appl. Opt. 39, 2401–2411 (2000). [CrossRef]
  7. M. L. Plett, P. R. Barbier, D. W. Rush, “Compact adaptive optical system based on blind optimization and a micromachined membrane deformable mirror,” Appl. Opt. 40, 327–330 (2001). [CrossRef]
  8. T. Weyrauch, M. A. Vorontsov, J. W. Gowens, T. G. Bifano, “Fiber coupling with adaptive optics for free-space optical communication,” in Free-Space Laser Communication and Laser Imaging,D. G. Voelz, J. C. Ricklin, eds., Proc. SPIE4489, 177–184 (2002). [CrossRef]
  9. H. Bruesselbach, M. L. Minden, S. Wang, D. C. Jones, M. S. Mangir, “A coherent fiber array based laser link for atmospheric aberration mitigation and power scaling,” in Free-Space Laser Communication Technologies XVI,G. S. Mecherle, C. Y. Young, J. S. Stryjewski, eds., Proc. SPIE5338, 90–101 (2004). [CrossRef]
  10. L. C. Andrews, R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).
  11. J. A. Buck, Fundamentals of Optical Fibers (Wiley, 1995).
  12. P. Gatt, T. P. Costello, D. A. Heimmermann, D. C. Castellanos, A. R. Weeks, C. M. Stickley, “Coherent optical array receivers for the mitigation of atmospheric turbulence and speckle effects,” Appl. Opt. 35, 5999–6009 (1996). [CrossRef] [PubMed]
  13. A. R. Weeks, J. Xu, R. R. Phillips, L. C. Andrews, C. M. Stickley, G. Sellar, J. S. Stryjewski, J. E. Harvey, “Experimental verification and theory for an eight-element multiple-aperture equal-gain coherent laser receiver for laser communications,” Appl. Opt. 37, 4782–4788 (1998). [CrossRef]
  14. L. Kazovsky, S. Benedetto, A. Willner, Optical Fiber Communication Systems (Artech House, 1996).
  15. P. C. D. Hobbs, Building Electro-Optical Systems (Wiley-Interscience, 2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited