OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 23 — Aug. 10, 2005
  • pp: 4980–4984

Effect of electro-optic modulation on coupled quasi-phase-matched frequency conversion

Cheng-Ping Huang, Yue-Hua Wang, and Yong-Yuan Zhu  »View Author Affiliations

Applied Optics, Vol. 44, Issue 23, pp. 4980-4984 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electro-optic effect can be employed to modulate the refractive index of an optical superlattice. In coupled quasi-phase matched processes, this modulation will introduce quasi-phase mismatches and result in energy redistribution among the optical waves. Numerical results indicate that an efficient third harmonic in a periodic or quasi-periodic superlattice can be achieved by varying the external dc electric field. This method provides a simple and convenient way to control the efficiencies of frequency conversion.

© 2005 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

Original Manuscript: July 15, 2004
Revised Manuscript: January 17, 2005
Manuscript Accepted: March 4, 2005
Published: August 10, 2005

Cheng-Ping Huang, Yue-Hua Wang, and Yong-Yuan Zhu, "Effect of electro-optic modulation on coupled quasi-phase-matched frequency conversion," Appl. Opt. 44, 4980-4984 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980). [CrossRef]
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  3. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997). [CrossRef]
  4. S. N. Zhu, Y. Y. Zhu, N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  5. R. L. Byer, “Quasi-phase-matched nonlinear interactions and devices,” J. Nonlinear Opt. Phys. Mater. 6, 549–592 (1997). [CrossRef]
  6. Y. Y. Zhu, N. B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. Quantum Electron. 31, 1093–1128 (1999). [CrossRef]
  7. G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006–3008 (2001). [CrossRef]
  8. Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, Z. Y. Xu, “Quasi-cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001). [CrossRef]
  9. K. K. Fradkin, A. Arie, P. Urenski, G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett. 88, 023903 (2002). [CrossRef]
  10. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004). [CrossRef]
  11. Y. Q. Lu, Z. L. Wang, Q. Wang, Y. X. Xi, N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000). [CrossRef]
  12. Y. Q. Lu, M. Xiao, G. J. Salamo, “Wide-bandwidth high-frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett. 78, 1035–1037 (2001). [CrossRef]
  13. K. T. Gahagan, D. A. Scrymgeour, J. L. Casson, V. Gopalan, J. M. Robinson, “Integrated high-power electro-optic lens and large-angle deflector,” Appl. Opt. 40, 5638–5642 (2001). [CrossRef]
  14. D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002). [CrossRef]
  15. Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett. 74, 123–125 (1999). [CrossRef]
  16. N. O’Brien, M. Missey, P. Powers, V. Dominic, K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett. 24, 1750–1752 (1999). [CrossRef]
  17. Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417–423 (2003). [CrossRef]
  18. C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, N. B. Ming, “Crucial effects of coupling coefficients on quasi-phase-matched harmonic generation in an optical superlattice,” Opt. Lett. 25, 436–438 (2000). [CrossRef]
  19. J. Feng, Y. Y. Zhu, N. B. Ming, “Harmonic generations in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578–5582 (1990). [CrossRef]
  20. R. K. P. Zia, W. J. Dallas, “A simple derivation of quasi-crystalline spectra,” J. Phys. A 18, L341–L345 (1985). [CrossRef]
  21. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001). [CrossRef]
  22. J. P. Meyn, M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214–1216 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited