OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 24 — Aug. 22, 2005
  • pp: 5055–5068

Semiconductor laser insert with uniform illumination for use in photodynamic therapy

Ivan Charamisinau, Gemunu Happawana, Gary Evans, Arye Rosen, Richard A. His, and David Bour  »View Author Affiliations


Applied Optics, Vol. 44, Issue 24, pp. 5055-5068 (2005)
http://dx.doi.org/10.1364/AO.44.005055


View Full Text Article

Enhanced HTML    Acrobat PDF (1982 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A low-cost semiconductor red laser light delivery system for esophagus cancer treatment is presented. The system is small enough for insertion into the patient’s body. Scattering elements with nanoscale particles are used to achieve uniform illumination. The scattering element optimization calculations, with Mie theory, provide scattering and absorption efficiency factors for scattering particles composed of various materials. The possibility of using randomly deformed spheres and composite particles instead of perfect spheres is analyzed using an extension to Mie theory. The measured radiation pattern from a prototype light delivery system fabricated using these design criteria shows reasonable agreement with the theoretically predicted pattern.

© 2005 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(170.5180) Medical optics and biotechnology : Photodynamic therapy
(220.4830) Optical design and fabrication : Systems design
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(290.5880) Scattering : Scattering, rough surfaces

History
Original Manuscript: April 8, 2004
Revised Manuscript: April 6, 2005
Manuscript Accepted: April 15, 2005
Published: August 20, 2005

Citation
Ivan Charamisinau, Gemunu Happawana, Gary Evans, Arye Rosen, Richard A. His, and David Bour, "Semiconductor laser insert with uniform illumination for use in photodynamic therapy," Appl. Opt. 44, 5055-5068 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-24-5055


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. S. Nyman, P. H. Hynninen, “Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy,” J. Photochem. Photobiol. B 73, 1–28 (2004). [CrossRef] [PubMed]
  2. T. Dalbasti, S. Cagli, E. Kilinc, N. Oktar, M. Ozsoz, “Online electrochemical monitoring of nitric oxide during photodynamic therapy,” Nitric Oxide 7, 301–305 (2002). [CrossRef] [PubMed]
  3. A. Ruol, G. Zaninotto, M. Costantini, G. Battaglia, M. Cagol, R. Alfieri, M. Epifani, E. Ancona, “Barrett’s esophagus: management of high-grade dysplasia and cancer,” J. Surg. Res. 117, 44–51 (2004). [CrossRef] [PubMed]
  4. J. van den Boogert, R. van Hillegersberg, H. J. van Staveren, R. W. de Bruin, H. van Dekken, P. D. Siersema, H. W. Tilanus, “Timing of illumination is essential for effective and safe photodynamic therapy: a study in the normal rat esophagus,” Br. J. Cancer 79, 825–830 (1999). [CrossRef] [PubMed]
  5. S. L. Jacques, “Laser-tissue interactions: photochemical, photothermal, and photomechanical mechanisms,” Surg. Clin. North Am. 72, 531–558 (1992). [PubMed]
  6. Diomed Inc., http://www.diomedinc.com/ .
  7. J. C. Chen, B. D. Swanson, “Microminiature illuminator for administering photodynamic therapy,” U.S. patent5,571,152 (5November1996).
  8. D. R. Doiron, H. L. Narcisco, P. Paspa, “Continuous gradient cylindrical diffusion tip for optical fibers and method for using,” U.S. patent5,330,465 (19July1994).
  9. X. Gu, R. C.-H. Tam, “Optical fiber diffuser,” U.S. patent6,398,778 (4June2002).
  10. C. Schmitz, S. Spaniol, V. Abraham, N. Ashraf, W. Neuberger, W. Ertmer, “Diffusing fibre tips for high-power medical laser applications,” Proc. SPIE 2631, 166–172 (1995). [CrossRef]
  11. J. C. Mizeret, H. E. van den Bergh, “Cylindrical fiberoptic light diffuser for medical applications,” Lasers Surg. Med. 19, 159–167 (1996). [CrossRef] [PubMed]
  12. D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect,” J. Photochem. Photobiol. 67, 140–149 (1998). [CrossRef]
  13. A. Rosen, H. Rosen, “The efficacy of transurethral thermal ablation in the management of benign prostatic hyperplasia,” in New Frontiers in Medical Device Technology (Wiley, 1995), pp. 79–103.
  14. A. Rosen, H. Rosen, “Catheter with distally located integrated circuit radiation generator,” U.S. patent4,998,932 (12March1991).
  15. R. A. Hsi, A. Rosen, C. Rodriguez, “Method and apparatus for catheter phototherapy with dose sensing,” U.S. patent6,749,623 (15June2004).
  16. I. Charamisinau, G. Happawana, G. Evans, A. Rosen, R. A. Hsi, “Portable optical actuator for photodynamic therapy,” Proc. SPIE 5261, 38–49 (2003). [CrossRef]
  17. I. Charamisinau, G. Happawana, G. Evans, J. Kirk, D. P. Bour, A. Rosen, R. A. Hsi, “High power semiconductor red laser arrays for use in photodynamic therapy,” special issue of the IEEE J. Sel. Top. Quantum Electron. Biophoton (submitted).
  18. R. Smith, G. Mitchell, “Calculation of complex propagating models in arbitrary, plane layered, complex dielectric structures,” EE Tech. Rep. 206 (University of Washington, Seattle, 1977), http://engr.smu.edu/ee/smuphotonics/Modeig.htm .
  19. D. P. Bour, R. S. Geels, D. W. Treat, T. L. Paoli, F. Ponce, R. L. Thorton, B. S. Crusor, R. D. Bringans, D. F. Welch, “Strained GaxIn1–xP/(AlGA)0.5In0.5P heterostructures and quantum-well laser diodes,” IEEE J. Quantum Electron. 30, 593–607 (1994). [CrossRef]
  20. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992). [CrossRef] [PubMed]
  21. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1964).
  22. P. Debye, “The diffraction theory of aberrations,” Ann. Phys. (Leipzig) 30, 59–62 (1909).
  23. I. Charamisinau, “Mie theory calculator,” 2004, available at http://engr.smu.edu/ee/smuphotonics/Software/Software_main.htm .
  24. A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, 1994).
  25. T. Ji, Y. Avny, D. Davidov, “Preparation and optical properties of Au-shell submicron polystyrene particles,” in Mater. Res. Soc. Symp. Proc. 636, 956–964 (2001).
  26. MicroFab Technologies Inc., www.microfab.com .
  27. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 23, 13549–13554 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited