OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 24 — Aug. 22, 2005
  • pp: 5131–5139

Methods for the characterization of deformable membrane mirrors

Martin Booth, Tony Wilson, Hong-Bo Sun, Taisuke Ota, and Satoshi Kawata  »View Author Affiliations

Applied Optics, Vol. 44, Issue 24, pp. 5131-5139 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate two methods for the characterization of deformable membrane mirrors and the training of adaptive optics systems that employ these mirrors. Neither method employs a wave-front sensor. In one case, aberrations produced by a wave-front generator are corrected by the deformable mirror by use of a rapidly converging iterative algorithm based on orthogonal deformation modes of the mirror. In the other case, a simple interferometer is used with fringe analysis and phase-unwrapping algorithms. We discuss how the choice of singular values can be used to control the pseudoinversion of the control matrix.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(220.1000) Optical design and fabrication : Aberration compensation

Original Manuscript: June 23, 2004
Revised Manuscript: November 27, 2004
Manuscript Accepted: December 22, 2004
Published: August 20, 2005

Martin Booth, Tony Wilson, Hong-Bo Sun, Taisuke Ota, and Satoshi Kawata, "Methods for the characterization of deformable membrane mirrors," Appl. Opt. 44, 5131-5139 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. P. Grosso, M. Yellin, “The membrane mirror as an adaptive optical element,” J. Opt. Soc. Am. 67, 399–406 (1977). [CrossRef]
  2. G. V. Vdovin, P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34, 2968–2972 (1995). [CrossRef] [PubMed]
  3. G. V. Vdovin, P. M. Sarro, S. Middelhoek, “Technology and applications of micromachined adaptive mirrors,” J. Micromech. Microeng. 9, R8–R20 (1999). [CrossRef]
  4. M. J. Booth, M. A. A. Neil, R. Juškaitis, T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788–5792 (2002). [CrossRef] [PubMed]
  5. L. Sherman, J. Y. Ye, O. Albert, T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002). [CrossRef] [PubMed]
  6. P. N. Marsh, D. Burns, J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003). [CrossRef] [PubMed]
  7. D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, S. Browne, P. Kervin, J. Snodgrass, N. Heimann, M. Shilko, R. Pohle, B. Carrion, C. Smith, D. Thiel, “Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites,” Opt. Express 10, 1508–1519 (2002). [CrossRef] [PubMed]
  8. T. Ota, S. Kawata, T. Sugiura, M. J. Booth, M. A. A. Neil, R. Juškaitis, T. Wilson, “Dynamic axial-position control of a laser-trapped particle by wave-front modification,” Opt. Lett. 28, 465–467 (2003). [CrossRef] [PubMed]
  9. T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juškaitis, T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701–L703 (2003). [CrossRef]
  10. E. Theofanidou, L. Wilson, W. J. Hossack, J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145–150 (2004). [CrossRef]
  11. F. Gonte, A. Courteville, R. Dandliker, “Optimization of single-mode fiber coupling efficiency with an adaptive membrane mirror,” Opt. Eng. 41, 1073–1076 (2002). [CrossRef]
  12. E. J. Fernández, P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003). [CrossRef] [PubMed]
  13. L. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, Y. Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror,” Appl. Opt. 38, 6019–6026 (1999). [CrossRef]
  14. C. Paterson, I. Munro, J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Expr. 6, 175–185 (2000). [CrossRef]
  15. R. K. Tyson, B. W. Frazier, “Microelectromechanical system programmable aberration generator for adaptive optics,” Appl. Opt. 40, 2063–2067 (2001). [CrossRef]
  16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1992).
  17. M. A. A. Neil, M. J. Booth, T. Wilson, “Dynamic wave-front generation for the characterization and testing of optical systems,” Opt. Lett. 23, 1849–1851 (1998). [CrossRef]
  18. M. A. A. Neil, M. J. Booth, T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17, 1098–1107 (2000). [CrossRef]
  19. M. J. Booth, “Direct measurement of Zernike aberration modes with a modal wave front sensor,” in Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE5162, 79–90 (2003).
  20. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002). [CrossRef]
  21. M. Born, E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, 1975).
  22. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  23. W. M. Macy, “Two-dimensional fringe-pattern analysis,” Appl. Opt. 22, 3898–3901 (1983). [CrossRef] [PubMed]
  24. C. Roddier, F. Roddier, “Interferogram analysis using Fourier transform techniques,” Appl. Opt. 26, 1668–1773 (1987). [CrossRef] [PubMed]
  25. D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley, 1998).
  26. E. S. Claflin, N. Bareket, “Configuring an electrostatic membrane mirror by leastsquares fitting with analytically derived influence functions,” J. Opt. Soc. Am. A 3, 1833–1839 (1986). [CrossRef]
  27. D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDer-mott, S. Browne, S. Rogers, M. Vaidyanathan, M. Shilko, “Laboratory and field demonstration of a low cost membrane mirror adaptive optics system,” Opt. Commun. 176, 339–345 (2000). [CrossRef]
  28. M. Schwertner, M. J. Booth, M. A. A. Neil, T. Wilson, “Measurement of specimen induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213, 11–19 (2004). [CrossRef]
  29. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited