OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 31 — Nov. 1, 2005
  • pp: 6692–6700

Hydroxyl tagging velocimetry in a supersonic flow over a cavity

Robert W. Pitz, Michael D. Lahr, Zachary W. Douglas, Joseph A. Wehrmeyer, Shengteng Hu, Campbell D. Carter, Kuang-Yu Hsu, Chee Lum, and Manoochehr M. Koochesfahani  »View Author Affiliations


Applied Optics, Vol. 44, Issue 31, pp. 6692-6700 (2005)
http://dx.doi.org/10.1364/AO.44.006692


View Full Text Article

Acrobat PDF (1022 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hydroxyl tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 (M 2) flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form a tagging grid of OH molecules. In this study, a 7×7 grid of hydroxyl (OH) molecules is tracked by planar laser-induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow in the plane of the laser sheets. Velocity precision is limited by the error in finding the crossing location of the OH lines written by the excimer tag laser. With a signal-to-noise ratio of about 10 for the OH lines, the determination of the crossing location is expected to be accurate within ±0.1 pixels. Velocity precision within the freestream, where the turbulence is low, is consistent with this error. Instantaneous, single-shot measurements of two-dimensional flow patterns were made in the nonreacting M 2 flow with a wall cavity under low- and high-pressure conditions. The single-shot profiles were analyzed to yield mean and rms velocity profiles in the M 2 nonreacting flow.

© 2005 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(280.2490) Remote sensing and sensors : Flow diagnostics
(280.7250) Remote sensing and sensors : Velocimetry
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

Citation
Robert W. Pitz, Michael D. Lahr, Zachary W. Douglas, Joseph A. Wehrmeyer, Shengteng Hu, Campbell D. Carter, Kuang-Yu Hsu, Chee Lum, and Manoochehr M. Koochesfahani, "Hydroxyl tagging velocimetry in a supersonic flow over a cavity," Appl. Opt. 44, 6692-6700 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-31-6692


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech.  23, 261–304 (1991).
  2. L. E. Drain, The Laser Doppler Technique (Wiley, 1980).
  3. M. S. Maurice, “Laser velocimetry seed particles within compressible, vertical flows,” AIAA J.  30, 376–383 (1992).
  4. R. J. Santoro, S. Pal, R. D. Woodward, and L. Schaaf, “Rocket testing at university facilities,” paper AIAA-2001-0748, presented at the 39th AIAA Aerospace Sciences Meeting, Reno, Nev., 8–11 January 2001 (American Institute of Aeronautics and Astronautics, Reston, VA., 2001).
  5. W. J. Marinelli, W. J. Kessler, M. G. Allen, S. J. Davis, and S. Arepalli (1991) “Copper atom based measurements of velocity and turbulence in arc jet flows,” presented at the 29th AIAA Aerospace Sciences Meeting, Reno, Nev. (American Institute of Aeronautics and Astronautics, 7–10 January 1991, paper AIAA-91-0358.
  6. M. Allen, S. Davis, W. Kessler, H. Legner, K. McManus, P. Mulhall, T. Parker, and D. Sonnenfroh, “Velocity field imaging in supersonic reacting flows near atmospheric pressure,” AIAA J.  32, 1676–1682 (1994).
  7. K. G. Klavuhn, G. Gauba, and J. C. McDaniel “OH laser-induced fluorescence velocimetry technique for steady, high-speed, reacting flows,” J. Propul. Power  10, 787–797 (1994).
  8. P. H. Paul, M. P. Lee, and R. K. Hanson, “Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO,” Opt. Lett.  14, 417–419 (1989).
  9. M. Zimmermann and R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett.  37, 885–887 (1980). [CrossRef]
  10. J. C. McDaniel, B. Hiller, and R. K. Hanson, “Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence,” Opt. Lett.  8, 51–53 (1983).
  11. A. F. P. Houwing, D. R. Smith, J. S. Fox, P. M. Danehy, and N. R. Mudford, “Laminar boundary layer separation at a fin-body junction in a hypersonic flow,” Shock Waves  11, 31–42 (2001).
  12. R. G. Seasholtz, F. J. Zupanc, and S. J. Schneider, “Spectrally resolved Rayleigh scattering diagnostic for hydrogen-oxygen rocket plume studies,” J. Propul. Power  8, 935–942 (1992).
  13. R. B. Miles and W. R. Lempert, “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech.  29, 285–326 (1997). [CrossRef]
  14. W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J.  40, 1065–1070 (2002).
  15. B. Hiller, R. A. Booman, C. Hassa, and R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum.  55, 1964–1967 (1984). [CrossRef]
  16. B. Stier and M. M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids  26, 297–304 (1999). [CrossRef]
  17. P. M. Danehy, S. O'Byrne, A. F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J.  41, 263–271 (2003).
  18. C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett.  307, 15–20 (1999). [CrossRef]
  19. P. Barker, A. Thomas, H. Rubinsztein-Dunlop, and P. Ljungberg, “Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence,” Spectrochim. Acta B  50, 1301–1310 (1995). [CrossRef]
  20. H. Rubinzstein-Dunlop, B. Littleton, P. Barker, P. Ljungberg, and Y. Malmsten, “Ionic strontium fluorescence as a method for flow tagging velocimetry,” Exp. Fluids  30, 36–42 (2001). [CrossRef]
  21. S. Krüger and G. Grünefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B  69, 509–512 (1999). [CrossRef]
  22. J. M. Ress, G. Laufer, and R. H. Krauss, “Laser ion time-of-flight velocity measurements using N2+ tracers,” AIAA J.  33, 296–301 (1995).
  23. R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, and J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett.  21, 755–757 (1996).
  24. L. A. Ribarov, J. A. Wehrmeyer, F. Batliwala, R. W. Pitz, and P. A. DeBarber, “Ozone tagging velocimetry using narrowband excimer lasers,” AIAA J.  37, 708–714 (1999).
  25. R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Tech.  11, 1259–1271 (2000). [CrossRef]
  26. L. R. Boedeker, “Velocity measurement by H2O photolysis and laser-induced fluorescence of OH,” Opt. Lett.  14, 473–475 (1989).
  27. D. F. Davidson, A. Y. Chang, M. D. DiRosa, and R. K. Hanson, “Continuous wave laser absorption techniques for gas dynamic measurements in supersonic flows,” Appl. Opt.  30, 2598–2608 (1991).
  28. J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193-nm H2O photodissociation,” Appl. Opt.  38, 6912–6917 (1999).
  29. L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, and R. A. Yetter, “Hydroxyl tagging velocimetry (HTV) in experimental air flows,” App. Phys. B  74, 175–183 (2002). [CrossRef]
  30. L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids  37, 65–74 (2004). [CrossRef]
  31. N. Dam, R. J. H. Klein-Douwel, N. M. Sijtsema, and J. J. ter Meulen, “Nitric oxide flow tagging in unseeded air,” Opt. Lett.  26, 36–38 (2001).
  32. N. M. Sijtsema, N. J. Dam, R. J. H. Klein-Douwel, and J. J. ter Meulen, “Air photolysis and recombination tracking: A new molecular tagging velocimetry scheme,” AIAA J.  40, 1061–1064 (2002).
  33. W. P. N. van der Laan, R. A. L. Tolboom, N. J. Dam, and J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an object in supersonic flow,” Exp. Fluid  34, 531–533 (2003).
  34. A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech.  339, 287–307 (1997). [CrossRef]
  35. A. Ben-Yakar and R. K. Hanson, “Cavity flame-holders for ignition and flame stabilization in scramjets: an overview,” J. Propul. Power  17, 869–877 (2001).
  36. M. R. Gruber and A. S. Nejad, “New supersonic combustion research facility,” J. Propul. Power  11, 1080–1083 (1995).
  37. M. R. Gruber, R. A. Baurle, T. Mathur, and K.-Y. Hsu, “Fundamental studies of cavity-based flameholder concepts for supersonic combustors,” J. Propul. Power  17, 146–153 (2001).
  38. M. R. Gruber, J. M. Donbar, C. D. Carter, and K.-Y. Hsu, “Mixing and combustion studies using cavity-based flameholders in a supersonic flow,” J. Propul. Power  20, 769–778 (2004).
  39. J. Luque and D. R. Crosley, “LIFbase: Database and Spectral Simulation,” SRI International Report MP99-009 (1999), http://www.sri.com/psd/lifbase.
  40. C. C. Rasmussen, J. F. Driscoll, C. D. Carter, and K.-Y. Hsu, “Characteristics of cavity-stabilized flames in a supersonic flow,” J. Propul. Power  21, 765–768 (2005).
  41. C. P. Gendrich and M. M. Koochesfahani, “A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV),” Exp. Fluids  22, 67–77 (1996). [CrossRef]
  42. R. K. Cohn and M. M. Koochesfahani, “The accuracy of remapping irregularly spaced velocity data onto a regular grid and the computation of vorticity,” Exp. Fluids  29, S61–S69 (2000). [CrossRef]
  43. R. W. Pitz and J. W. Daily, “Combustion in a turbulent mixing layer formed at a rearward-facing step,” AIAA J.  21, 1565–1570 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited