Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Least-squares support vector machines modelization for time-resolved spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

By use of time-resolved spectroscopy it is possible to separate light scattering effects from chemical absorption effects in samples. In the study of propagation of short light pulses in turbid samples the reduced scattering coefficient and the absorption coefficient are usually obtained by fitting diffusion or Monte Carlo models to the measured data by use of numerical optimization techniques. In this study we propose a prediction model obtained with a semiparametric modeling technique: the least-squares support vector machines. The main advantage of this technique is that it uses theoretical time dispersion curves during the calibration step. Predictions can then be performed by use of data measured on different kinds of sample, such as apples.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Rapid and accurate determination of tissue optical properties using least-squares support vector machines

Ishan Barman, Narahara Chari Dingari, Narasimhan Rajaram, James W. Tunnell, Ramachandra R. Dasari, and Michael S. Feld
Biomed. Opt. Express 2(3) 592-599 (2011)

Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses

Johannes Swartling, Andrea Bassi, Cosimo D’Andrea, Antonio Pifferi, Alessandro Torricelli, and Rinaldo Cubeddu
Appl. Opt. 44(22) 4684-4692 (2005)

Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements

Jan S. Dam, Nazila Yavari, Søren Sørensen, and Stefan Andersson-Engels
Appl. Opt. 44(20) 4281-4290 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved