OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 33 — Nov. 20, 2005
  • pp: 7181–7186

Photonic devices based on preferential etching

Bob Bellini, Jean-François Larchanché, Jean-Pierre Vilcot, Didier Decoster, Romeo Beccherelli, and Antonio d’Alessandro  »View Author Affiliations

Applied Optics, Vol. 44, Issue 33, pp. 7181-7186 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (686 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a design concept of optical waveguides characterized by a practical and reproducible process based on preferential etching of crystalline silicon substrates. Low-loss waveguides, spot-size converters, and power dividers have been obtained with polymers. We have also aligned liquid crystals in the waveguides and demonstrated guided propagation. Therefore this technology is a suitable platform for soft-matter photonics and heterogeneous integration.

© 2005 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(160.6000) Materials : Semiconductor materials
(230.4000) Optical devices : Microstructure fabrication
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:

Original Manuscript: March 14, 2005
Revised Manuscript: July 5, 2005
Manuscript Accepted: July 13, 2005
Published: November 20, 2005

Bob Bellini, Jean-François Larchanché, Jean-Pierre Vilcot, Didier Decoster, Romeo Beccherelli, and Antonio d’Alessandro, "Photonic devices based on preferential etching," Appl. Opt. 44, 7181-7186 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for instance, D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000), and other papers in the same issue. [CrossRef]
  2. I. Moerman, P. Van Daele, P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE. J. Sel. Top. Quantum Electron. 3, 1308–1320 (1997). [CrossRef]
  3. S. Sottini, D. Grando, L. Palchetti, E. Giorgetti, “Optical fiber-polymer guide coupling by a tapered graded index glass guide,” IEEE J. Quantum Electron 31, 1123–1129 (1995). [CrossRef]
  4. M. Mashayekhi, T. Touam, W. J. Wang, E. Berolo, S. Iraj Najafi, “Semiconductor device to optical fibre coupling low-loss glass taper waveguide,” Opt. Eng. 36, 3476–3477 (1997). [CrossRef]
  5. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE. J. Sel. Top. Quantum Electron. 6, 54–68 (2000). [CrossRef]
  6. A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, L. R. Dalton, “Vertically tapered polymer waveguide mode size transformer for improved fibre coupling,” Opt. Eng. 39, 1507–1516 (2000). [CrossRef]
  7. R. Inaba, M. Kato, M. Sagawa, H. Akahoshi, “Two-dimensional mode size transformation by Δn-controlled polymer waveguides,” IEEE Photon. Technol. Lett. 9, 761–764 (1997).
  8. J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, “All polymer photonic devices using excimer laser micromachining,” IEEE Photon. Technol. Lett. 16, 509–512 (2004). [CrossRef]
  9. C. R. Tellier, G. Huve, T. G. Leblois, “Anisotropic chemical etching of III-V crystals. Dissolution slowness surface and application to GaAs,” Active Passive Electron. Compon. 27, 133–154 (2004). [CrossRef]
  10. H.-W. Chiu, N.-S. Ho, S.-S. Lu, “A process for the formation of submicron V-gate by micromachined V-grooves using GaInP/GaAs selective etching technique,” IEEE Electron. Device Lett. 22, 420–422 (2001). [CrossRef]
  11. A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).
  12. K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70, 420–457 (1982). [CrossRef]
  13. N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theory Tech. MTT29, 600–605 (1981). [CrossRef]
  14. B. M. A. Rahman, F. A. Fernandez, J. B. Davies, “Review of finite element methods for microwave and optical waveguides,” Proc. IEEE 79, 1443–1448 (1991). [CrossRef]
  15. A. d’Alessandro, R. Asquini, C. Gizzi, B. Bellini, R. Beccherelli, “Integrated optic devices using liquid crystals: design and fabrication issues,” in Liquid Crystals VIII, I.-C. Khoo, ed., Proc. SPIE5518, 123–135 (2004). [CrossRef]
  16. L. De Bougrenet, De La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31, 241–269 (2004). [CrossRef]
  17. Author, “Procédé de réalisation d’un guide d’onde, notamment optique, et dispositif de couplage optique comportant un tel guide,” French patent FR13848 (patent pending).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited