OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 9 — Mar. 21, 2005
  • pp: 1657–1666

Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 1. System setup and characterization

Thomas Müller, Detlef Müller, and René Dubois  »View Author Affiliations

Applied Optics, Vol. 44, Issue 9, pp. 1657-1666 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (176 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an instrument for measuring the particle extinction coefficient at ambient conditions in the spectral range from 270 to 1000 nm. It is based on a differential optical absorption spectroscopy (DOAS) system, which was originally used for measuring trace-gas concentrations of atmospheric absorbers in the ultraviolet–visible wavelength range. One obtains the particle extinction spectrum by measuring the total atmospheric extinction and subtracting trace-gas absorption and Rayleigh scattering. The instrument consists of two nested Newton-type telescopes, which are simultaneously used for emitting and detecting light, and two arrays of retroreflectors at the ends of the two light paths. The design of this new instrument solves crucial problems usually encountered in the design of such instruments. The telescope is actively repositioned during the measurement cycle. Particle extinction is simultaneously measured at several wavelengths by the use of two grating spectrometers. Optical turbulence causes lateral movement of the spot of light in the receiver telescope. Monitoring of the return signals with a diode permits correction for this effect. Phase-sensitive detection efficiently suppresses background signals from the atmosphere as well as from the instrument itself. The performance of the instrument was tested during a measurement period of 3 months from January to March 2000. The instrument ran without significant interruption during that period. A mean accuracy of 0.032 km−1 was found for the extinction coefficient for an 11-day period in March.

© 2005 Optical Society of America

Original Manuscript: March 15, 2004
Revised Manuscript: November 7, 2004
Manuscript Accepted: November 8, 2004
Published: March 20, 2005

Thomas Müller, Detlef Müller, and René Dubois, "Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 1. System setup and characterization," Appl. Opt. 44, 1657-1666 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Heintzenberg, R. J. Charlson, A. D. Clarke, C. Liousse, C. V. Ramaswamy, K. P. Shine, M. Wendisch, “Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects,” Contrib. Atmos. Phys. 70, 249–264 (1997).
  2. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 256, 423–430 (1992). [CrossRef]
  3. R. J. Charlson, T. L. Anderson, H. Rodhe, “Direct climate forcing by anthropogenic aerosols: quantifying the link between atmospheric sulfate and radiation,” Contrib. Atmos. Phys. 27, 79–94 (1999).
  4. D. J. Delene, J. A. Ogren, “Variability of aerosol optical properties at four North American surface monitoring sites,” J. Atmos. Sci. 59, 1136–1150 (2002).
  5. B. Y. H. Liu, D. Y. H. Pui, K. T. Whitby, D. B. Kittelson, Y. Kousaka, R. L. McKenzie, “The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols,” Atmos. Environ. 12, 99–104 (1978). [CrossRef]
  6. M. H. Bergin, S. E. Schwartz, R. N. Halthore, J. A. Ogren, D. L. Hlavka, “Comparison of aerosol optical depth inferred from surface measurements with that determined by sun photometry for cloud-free conditions at a continental U.S. site,” J. Geophys. Res. 105, 6807–6816 (2000). [CrossRef]
  7. U. Leiterer, A. Naebert, T. Naebert, G. Alekseeva, “A new star photometer developed for spectral aerosol optical thickness measurements in Lindenberg,” Beitr. Phys. Atmosph. 68, 133–141 (1995).
  8. H. Horvath, “The University of Vienna telephotometer,” Atmos. Environ. 15, 2537–2546 (1981). [CrossRef]
  9. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurements of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  10. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  11. E. Paganini, F. Trespidi, F. Ferri, “Instrument for long-path spectral extinction measurements in air: application to sizing of airborne particles,” Appl. Opt. 40, 4261–4274 (2001). [CrossRef]
  12. J. Notholt, F. Raes, “Test of in situ measurements of atmospheric aerosols and trace gases by long path transmission spectroscopy,” J. Aerosol Sci. 21, 193–196 (1990). [CrossRef]
  13. H. Flentje, R. Dubois, J. Heintzenberg, H.-J. Karbach, “Retrieval of aerosol properties from boundary layer extinction measurements with a DOAS system,” Geophys. Res. Lett. 24, 2019–2022 (1997). [CrossRef]
  14. J. Lee, Y. J. Kim, “Extinction measurements using a differential optical absorption spectrometer,” J. Korean Phys. Soc. 42, 732–724 (2003).
  15. U. Platt, D. Perner, H. Pätz, “Simultaneous measuremenof atmospheric CH2O, O3, and NO2by differential optical absorption,” J. Geophys. Res. D 84, 6329–6335 (1979). [CrossRef]
  16. M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distribution obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978). [CrossRef]
  17. J. Heintzenberg, H. Müller, H. Quenzel, E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308–1315 (1981). [CrossRef] [PubMed]
  18. D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999). [CrossRef]
  19. D. Müller, U. Wandinger, A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999). [CrossRef]
  20. O. Dubovik, M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. D105(D16), 20,673–20,696 (2000). [CrossRef]
  21. F. Ferri, A. Bassini, E. Paganini, “Modified version of the Chahine algorithm to invert spectral extinction data for particle sizing,” Appl. Opt. 34, 5829–5839 (1995). [CrossRef] [PubMed]
  22. H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.
  23. L. S. Rothman, “The HITRAN molecular database—editions of 1991 and 1992,” J. Quant. Spectros. Radiat. Transfer 48, 469–507 (1992). [CrossRef]
  24. E. Vigroux, “Contribution à l’étude expérimentale de l’absorption de l’ozone,” Ann. Phys. 8, 709–762 (1953).
  25. E. C. Y. Inn, Y. Tanaka, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Opt. Soc. Am. 43, 870–873 (1953). [CrossRef]
  26. M. Griggs, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49, 857–859 (1968). [CrossRef]
  27. L. T. Molina, M. J. Molina, “Absolute absorption coefficient of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986). [CrossRef]
  28. M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the absorption cross sections of ozone in the wavelength region 339–355 nm,” J. Geophys. Res. 94, 8485–8490 (1989). [CrossRef]
  29. A. Amoruso, M. Cacciani, A. di Sarra, G. Fiocco, “Absorption cross sections of ozone in the 590 to 610 region at T= 230 K and T= 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990). [CrossRef]
  30. W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. 40, 195–217 (1987). [CrossRef]
  31. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 49, 18,577–18,582 (1990). [CrossRef]
  32. R. W. Ditchburn, P. A. Young, “The absorption of molecular oxygen between 1850 and 2500 Å,” J. Atmos. Terr. Phys. 24, 127–139 (1962). [CrossRef]
  33. A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross section measurements in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994). [CrossRef]
  34. D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution cross section measurements of SO2at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1994). [CrossRef]
  35. A. Buchholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995). [CrossRef]
  36. T. Müller, D. Müller, R. Dubois, “Measurements of optical particle properties at ambient conditions using a DOAS-extinction telescope. 2. Validation study,” submitted to Appl. Opt.
  37. H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. Atm. 12, 33–53 (1924).
  38. A. Ångström, “Techniques of determining the turbidity of the atmosphere,” Tellus 13, 214–223 (1961). [CrossRef]
  39. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002). [CrossRef]
  40. D. Müller, A. Ansmann, F. Wagner, K. Franke, D. Althausen, “European pollution outbreaks during ACE 2: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 107(D15), 4248, (2002). [CrossRef]
  41. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  42. C. Böckmann, “Hybrid regularization method for ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329–1342 (2001). [CrossRef]
  43. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002). [CrossRef] [PubMed]
  44. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004). [CrossRef] [PubMed]
  45. D. Müller, K. Franke, A. Ansmann, D. Althausen, F. Wagner, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res. 108(D19), 4600, (2003). [CrossRef]
  46. D. Müller, I. Mattis, A. Ansmann, B. Wehner, D. Althausen, O. Dubovik, “Closure study on optical and microphysical properties of an urban and Arctic haze air mass observed with Raman lidar and Sun photometer,” J. Geophys. Res. 109(D13), 13206, (2004). [CrossRef]
  47. W. C. Hinds, Aerosol Technology (Wiley, New York, 1982).
  48. M. Pahlow, D. Müller, G. Feingold, W. Eberhard, R. Steward, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer data: simulations,” Appl. Opt. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited