OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 9 — Mar. 21, 2005
  • pp: 1691–1697

Tunable waveguides via photo-oxidation of plasma-polymerized organosilicon films

John P. Lock and Karen K. Gleason  »View Author Affiliations

Applied Optics, Vol. 44, Issue 9, pp. 1691-1697 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasma-enhanced chemical vapor deposition (PECVD) of dimethylsilane and hexamethyldisilane produced thin films with a refractive index of 1.56 ± 0.01 at 633 nm. A decrease in the refractive index of approximately 3% was observed after irradiation with UV light from an ArF laser operating at 193 nm. Lower-intensity UV light from a Hg arc lamp induced a slower and controllable decrease in the refractive index. Top-side prism coupling showed the as-deposited organosilicon films to be multimode at 633 nm and single mode at 1550 nm. A model predicted that 30 s of UV irradiation with the Hg arc lamp would decrease the refractive index of the light-guiding film by approximately 0.01, converting the waveguide into single-mode operation across the spectrum of essential wavelengths for microphotonics. Irradiation followed by further coupling experiments confirmed this tunability. Trimming the refractive index of patternable organosilicon polymeric films presents a method of optimizing the coupling performance of PECVD microphotonic interconnect layers postdeposition.

© 2005 Optical Society of America

Original Manuscript: July 1, 2004
Revised Manuscript: November 6, 2004
Manuscript Accepted: November 16, 2004
Published: March 20, 2005

John P. Lock and Karen K. Gleason, "Tunable waveguides via photo-oxidation of plasma-polymerized organosilicon films," Appl. Opt. 44, 1691-1697 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Ma, A. K. Y. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339–1365 (2002). [CrossRef]
  2. A. Grill, L. Perraud, V. Patel, C. Jahnes, S. Cohen, “Low dielectric constant SiCOH films as potential candidates for interconnect dielectrics,” Mater. Res. Soc. Symp. Proc. 565, 107–116 (1999). [CrossRef]
  3. L. Eldada, “Polymer microphotonics,” in Nano- and Micro-Optics for Information Systems, L. Eldada, ed., Proc. SPIE5225, 49–60 (2003). [CrossRef]
  4. L. Eldada, “Polymer integrated optics: promise versus practicality,” in Organic Photonic Materials and Devices IV, B. Kippelen, D. D. Bradley, eds., Proc. SPIE4642, 11–22 (2002). [CrossRef]
  5. K. Wada, H.-C. Luan, D. R. C. Lim, L. C. Kimerling, “On-chip interconnection beyond semiconductor roadmap—silicon microphotonics,” in Active and Passive Optical Components for WDM Communications II, A. K. Dutta, A. A. S. Awwal, N. K. Dutta, K. Okamoto, eds., Proc. SPIE4870, 437–443 (2002). [CrossRef]
  6. L. A. Hornak, T. W. Wedman, E. W. Kwock, “Polyalkylsilyne photodefined thin-film optical waveguides,” J. Appl. Phys. 67, 2235–2239 (1990). [CrossRef]
  7. P. K. Tien, G. Smolinsky, R. J. Martin, “Thin organosilicon films for integrated optics,” Appl. Opt. 11, 637–642 (1972). [CrossRef] [PubMed]
  8. R. D. Miller, J. Michl, “Polysilane high polymers,” Chem. Rev. 89, 1359–1410 (1989). [CrossRef]
  9. F. C. Shilling, T. W. Weidman, A. M. Joshi, “Solid-state characterization of polysilanes containing the SiH bond,” Macromol. Symp. 86, 131–143 (1994). [CrossRef]
  10. A. Watanabe, T. Komatsubara, O. Ito, M. Matsuda, “SiC/SiO2 micropatterning by ultraviolet irradiation and heat treatment of a poly(phenylsilyne) film,” J. Appl. Phys. 77,(6) 2796–2800 (1995). [CrossRef]
  11. C. Monget, O. Joubert, “Plasma polymerized methylsilane. II. Performance for 248 nm lithography,” J. Vac. Sci. Technol. B 18, 785–792 (2000). [CrossRef]
  12. O. Joubert, D. Fuard, C. Monget, T. Weidman, “Plasma polymerized methylsilane. III. Process optimization for 193 nm lithography applications,” J. Vac. Sci. Technol. B 18, 793–798 (2000). [CrossRef]
  13. R. R. Kunz, M. Rothschild, D. J. Ehrlich, S. P. Sawan, Y. G. Tsai, “Controlled-ambient photolithography of polysilane resists at 193 nm,” J. Vac. Sci. Technol. B 7, 1629–1633 (1989). [CrossRef]
  14. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996). [CrossRef]
  15. R. Moosburger, K. Petermann, “4 × 4 digital optical matrix switch using polymeric oversized rib waveguides,” IEEE Photon. Technol. Lett. 10, 684–686 (1998). [CrossRef]
  16. K. Yasuo, S. Shinya, B. Gokon, S. Seitoku, E. Soichi, S. Shuichi, I. Takashi, K. Keiji, S. Shinichiro, “Central wavelength adjustment method for asymmetric directional coupler type wavelength filter and asymmetric directional coupler type wavelength filter,” Kanagawa Academy of Science and Technology and General Electric Toshiba Silicones Company Ltd., Jap. Pat. # 2000075151 (2000).
  17. C. Kostrzewa, R. Moosburger, G. Fischbeck, B. Schuppert, K. Petermann, “Tunable polymer optical add/drop filter for multiwavelength networks,” IEEE Photon. Technol. Lett. 9, 1487–1489 (1997). [CrossRef]
  18. D. B. Wolfe, J. C. Love, B. D. Gates, G. M. Whitesides, R. S. Conroy, M. Prentiss, “Fabrication of planar optical waveguides by electrical microcontact printing,” Appl. Phys. Lett. 84, 1623–1625 (2004). [CrossRef]
  19. W.-Y. Hwang, J.-J. Kim, T. Zyung, M.-C. Oh, S.-Y. Shin, “Postphotobleaching method for the control of coupling constant in an electro-optic polymer directional coupler switch,” Appl. Phys. Lett. 67, 763–765 (1995). [CrossRef]
  20. A. Chen, V. Chuyano, F. I. Marti-Carrera, S. Garner, W. H. Steier, S. S. H. Mao, Y. Ra, L. R. Dalton, Y. Shi, “Trimming of polymer waveguide Y-junction by rapid photobleaching for tuning the power splitting ratio,” IEEE Photonic Technol. Lett. 9, 1499–1501 (1997). [CrossRef]
  21. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971). [CrossRef] [PubMed]
  22. P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969). [CrossRef]
  23. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970).
  24. D. D. Burkey, K. K. Gleason, “Structure and mechanical properties of thin films deposited from 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane and water,” J. Appl. Phys. 93, 5143–5150 (2003). [CrossRef]
  25. H. G. Pryce-Lewis, D. J. Edell, K. K. Gleason, “Pulsed-PECVD films from hexamethylcyclotrisiloxane for use as insulating biomaterials,” Chem. Mater. 12, 3488–3494 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited