OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 10 — Apr. 1, 2006
  • pp: 2251–2260

In vitro studies toward noninvasive glucose monitoring with optical coherence tomography

Matti Kinnunen, Risto Myllylä, Tiina Jokela, and Seppo Vainio  »View Author Affiliations

Applied Optics, Vol. 45, Issue 10, pp. 2251-2260 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (731 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use optical coherence tomography (OCT) to measure glucose-induced changes in Intralipid and in mouse skin samples in vitro. Mouse skin samples are cultured in a CO 2 incubator before measurements are made with different amounts of added glucose concentrations. The results show that the glucose-induced changes in the OCT slope value vary between 20 %   and   52 % 30 mM glucose in different mouse skin samples. This change is much larger than the change in 2 % Intralipid ( 2.1 % / 30   mM ) and in 5 % Intralipid ( 0.86 % 30 mM ) . Hence the results show that OCT has potential to monitor glucose-induced changes in tissues in vitro.

© 2006 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:
Photon Correlation and Scattering

Original Manuscript: July 6, 2005
Revised Manuscript: November 15, 2005
Manuscript Accepted: November 18, 2005

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Matti Kinnunen, Risto Myllylä, Tiina Jokela, and Seppo Vainio, "In vitro studies toward noninvasive glucose monitoring with optical coherence tomography," Appl. Opt. 45, 2251-2260 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Amos, D. J. McCarty, and P. Zimmet, "The rising global burden of diabetes and its complications: estimates and projections to the year 2010," Diabetes Med. 14, S7-S85 (1997). [CrossRef]
  2. H. King, R. E. Aubert, and W. H. Herman, "Global burden of diabetes, 1995-2025. Prevalence, numerical estimates, and projections," Diabetes Care 21, 1414-1431 (1998). [CrossRef] [PubMed]
  3. R. J. McNichols and G. L. Coté, "Optical glucose sensing in biological fluids: an overview," J. Biomed. Opt. 5, 5-16 (2000). [CrossRef] [PubMed]
  4. M. A. Arnold, "Non-invasive glucose monitoring," Curr. Opin. Biotechnol. 7, 46-49 (1996). [CrossRef] [PubMed]
  5. H. Zeller, P. Novak, and R. Landgraf, "Blood glucose measurement by infrared spectroscopy," Int. J. Artif. Organs 12, 129-135 (1989). [PubMed]
  6. Y. Mendelson, A. C. Clermont, R. A. Peura, and B.-C. Lin, "Blood glucose measurement by multiple attenuated total reflection and infrared absorption spectroscopy," IEEE Trans. Biomed. Eng. 37, 458-465 (1990). [CrossRef] [PubMed]
  7. R. Marbach, T. H. Koschinsky, F. A. Gries, and H. M. Heise, "Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip," Appl. Spectrosc. 47, 875-881 (1993). [CrossRef]
  8. S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, "Noninvasive prediction of glucose by near infrared diffuse reflectance spectroscopy," Clin. Chem. 45, 1651-1658 (1999). [PubMed]
  9. C. Chou, C.-Y. Han, W.-C. Kuo, Y.-C. Huang, C.-M. Feng, and J.-C. Shyu, "Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter," Appl. Opt. 37, 3553-3557 (1998). [CrossRef]
  10. A. J. Berger, Y. Wang, and M. S. Feld, "Rapid, noninvasive concentration measurements of aqueous biological analytes by near-infrared Raman spectroscopy," Appl. Opt. 35, 209-212 (1996). [CrossRef] [PubMed]
  11. A. J. Berger, T.-W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, "Multicomponent blood analysis by near-infrared Raman spectroscopy," Appl. Opt. 38, 2916-2926 (1999). [CrossRef]
  12. M. J. Goetz, G. L. Coté, R. Erckens, W. March, and M. Motamedi, "Application of a multivariate technique to Raman spectra for quantification of body chemicals," IEEE Trans. Biomed. Eng. 42, 728-731 (1995). [CrossRef] [PubMed]
  13. G. B. Christison and H. A. MacKenzie, "Laser photoacoustic determination of physiological glucose concentrations in human whole blood," Med. Biol. Eng. Comput. 31, 284-290 (1993). [CrossRef] [PubMed]
  14. K. M. Quan, G. B. Christison, H. A. MacKénzie, and P. Hodgson, "Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phatom," Phys. Med. Biol. 38, 1911-1922 (1993). [CrossRef] [PubMed]
  15. H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999). [PubMed]
  16. H. S. Ashton, H. A. MacKenzie, P. Rae, Y. C. Shen, S. Spiers, and J. Lindberg, "Blood glucose measurements by photoacoustics," in Proceedings of CP463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F.Scudieri and M.Bertolotti, eds. (AIP, 1999), pp. 570-572. [CrossRef]
  17. Z. Zhao, "Pulsed photoacoustic techniques and glucose determination in human blood and tissue," Ph.D. dissertation (University of Oulu, Finland, 2002).
  18. A. A. Bednov, A. A. Karabutov, E. V. Savateeva, W. F. March, and A. A. Oraevsky, "Monitoring glucose in vivo by measuring laser-induced acoustic profiles," in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE 3916, 9-18 (2000). [CrossRef]
  19. A. A. Bednov, E. V. Savateeva, and A. A. Oraevsky, "Glucose monitoring in whole blood by measuring laser-induced acoustic profiles," in Biomedical Optoacoustics IV, A. A. Oraevsky, ed., Proc. SPIE 4960, 21-29 (2003). [CrossRef]
  20. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  21. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  22. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, "Noninvasive monitoring of glucose concentration with optical coherence tomography," Opt. Lett. 26, 992-994 (2001). [CrossRef]
  23. K. Larin, I. Larina, M. Motamedi, V. Gelikonov, R. Kuranov, and R. Esenaliev, "Potential application of optical coherence tomography for non-invasive monitoring of glucose concentration," in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 4263, 83-90 (2001). [CrossRef]
  24. K. V. Larin, M. Motamedi, M. S. Eledrisi, and R. O. Esenaliev, "Noninvasive blood glucose monitoring with optical coherence tomography, a pilot study in human subjects," Diabetes Care 25, 2263-2267 (2002). [CrossRef] [PubMed]
  25. K. V. Larin, M. Motamedi, T. V. Ashitkov and R. O. Esenaliev, "Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study," Phys. Med. Biol. 48, 1371-1390 (2003). [CrossRef] [PubMed]
  26. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  27. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004). [CrossRef] [PubMed]
  28. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, "Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source," Opt. Express 12, 2112-2119 (2004). [CrossRef] [PubMed]
  29. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Appl. Opt. 43, 2874-2883 (2004). [CrossRef] [PubMed]
  30. M. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol. 113, 325-332 (1995). [CrossRef] [PubMed]
  31. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, "Optical coherence tomography of the human skin," J. Am. Acad. Dermatol. 37, 958-963 (1997). [CrossRef]
  32. M. Kinnunen, Z. Zhao, and R. Myllylä, "Comparison of the pulsed photoacoustic technique and the optical coherence tomography from the viewpoint of biomedical sensing," in The Fourth International Conference on Advanced Optical Materials and Devices (AOMD-4), A. Rosental, ed., Proc. SPIE 5946, 468-480 (2005).
  33. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriquez, and J. K. Barton, "Texture analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt. 8, 570-575 (2003). [CrossRef] [PubMed]
  34. A. Mateasik, F. Uherek, D. Jr. Chorvat, D. Tazka, and J. Kyselovic, "Imaging of mouse aorta using OCT," in Saratov Fall Meeting 2000: Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE 4241, 153-161 (2001). [CrossRef]
  35. B. M. Jensen, P. Bjerring, J. S. Christiansen, and H. Orskov, "Glucose content in human skin: relationship with blood glucose levels," Scand. J. Clin. Lab. Invest. 55, 427-432 (1995). [CrossRef] [PubMed]
  36. J. Kao, J. Hall, and J. M. Holland, "Quantitation of cutaneous toxicity: an in vitro approach using skin organ culture," Toxicol. Appl. Pharmacol. 68, 206-217 (1983). [CrossRef] [PubMed]
  37. F. G. Bartnik, W. F. Pittermann, N. Mendorf, U. Tillman, and K. Künstler, "Skin organ culture for the study of skin irritancy," Toxicol. In Vitro 4, 293-301 (1990). [CrossRef]
  38. R.C.Weast, ed., Handbook of Chemistry and Physics, 55th ed. (CRC Press, 1974), p. D-205.
  39. M. Kohl, M. Cope, M. Essenpreis, and D. Böcker, "Influence of glucose concentration on light scattering in tissue-simulating phantoms," Opt. Lett. 19, 2170-2172 (1994). [CrossRef] [PubMed]
  40. M. Kohl, M. Essenpreis, and M. Cope, "The influence of glucose concentration upon the transport of light in tissue-simulating phantoms," Phys. Med. Biol. 40, 1267-1287 (1995). [CrossRef] [PubMed]
  41. Y. Pan, R. Birngruber, J. Rosperich, and R. Engelhardt, "Low-coherence optical tomography in turbid tissue: theoretical analysis," Appl. Opt. 34, 6564-6574 (1995). [CrossRef] [PubMed]
  42. R. K. Wang, "Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues," Phys. Med. Biol. 47, 2281-2299 (2002). [CrossRef] [PubMed]
  43. L. Thrane, H. T. Yura, and P. E. Andersen, "Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle," J. Opt. Soc. Am. A 17, 484-490 (2000). [CrossRef]
  44. L. Thrane, "Optical coherence tomography: modeling and applications," Ph.D. dissertation (Risø National Laboratory, Roskilde, Denmark, 2001).
  45. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999). [CrossRef]
  46. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, "Precision of measurement of tissue optical properties with optical coherence tomography," Appl. Opt. 42, 3027-3037 (2003). [CrossRef] [PubMed]
  47. V. V. Tuchin, Tissue Optics, Light Scattering Methods and Instruments for Medical Diagnosis, Tutorial Texts in Optical Engineering TT38 (SPIE, 2000).
  48. H. Liu, Y. Zhang, M. Kimura, and B. Chance, "Theoretical and experimental investigation on solute-induced changes in optical properties in living tissues," in Biomedical Optical Spectroscopy and Diagnostics, E.Sevick-Muraca and D.Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), pp. 10-12.
  49. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991). [CrossRef] [PubMed]
  50. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992). [CrossRef] [PubMed]
  51. T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001). [CrossRef] [PubMed]
  52. E. K. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. J. Welch, "Effects of compression on soft tissue optical properties," IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996). [CrossRef]
  53. G. Zaccanti, S. Del Bianco, and F. Martelli, "Measurements of optical properties of high-density media," Appl. Opt. 42, 4023-4030 (2003). [CrossRef] [PubMed]
  54. M. Bondani, D. Redaelli, A. Spinelli, A. Andreoni, G. Roberti, P. Riccio, R. Liuzzi, and I. Rech, "Photon time-of-flight distributions through turbid media directly measured with single-photon avalanche diodes," J. Opt. Soc. Am. B 20, 2383-2388 (2003). [CrossRef]
  55. A. Giusto, R. Saija, M. A. Iati, P. Denti, F. Borghese, and O. I. Sindoni, "Optical properties of high-density dispersions of particles: application to intralipid solutions," Appl. Opt. 42, 4375-4380 (2003). [CrossRef] [PubMed]
  56. T. Xu, C. Zhang, X. Wang, L. Zhang, and J. Tian, "Measurement and analysis of light distribution in Intralipid-10% at 650 nm," Appl. Opt. 42, 5777-5784 (2003). [CrossRef] [PubMed]
  57. M. Kirillin, A. V. Priezzhev, M. Kinnunen, E. Alarousu, Z. Zhao, J. Hast, and R. Myllylä, "Glucose sensing in aqueous Intralipid suspension with an optical coherence tomography system: experiment and Monte Carlo simulation," in Optical Diagnostics and Sensing IV, G. L. Cote and A. V. Priezzhev, eds., Proc. SPIE 5325, 164-173 (2004). [CrossRef]
  58. E. Alarousu, J. Hast, M. Kinnunen, M. Kirillin, R. Myllylä, J. Plucinski, A. Popov, A. V. Priezzhev, T. Prykäri, J. Saarela, and Z. Zhao, "Noninvasive glucose sensing in scattering media using OCT, PAS and TOF techniques," in Saratov Fall Meeting 2003: Optical Technologies in Biophysics and Medicine V, V. V. Tuchin, ed., Proc. SPIE 5474, 33-41 (2004). [CrossRef]
  59. M. Kinnunen, Z. Zhao, and R. Myllylä, "Effect of glucose on optical properties of intralipid--measurements with photoacoustic and optical techniques," in Proceedings of the International Topical Meeting on Optical Sensing and Artificial Vision OSAV'2004 (ITMO State University, Saint Petersburg, Russia, 2004), pp. 248-255.
  60. M. Kinnunen, A. P. Popov, J. Plucinski, R. Myllylä, and A. V. Priezzhev, "Measurements of glucose content in scattering media with time of flight technique; comparison with Monte Carlo simulations," in Saratov Fall Meeting 2003: Optical Technologies in Biophysics and Medicine V, V. V. Tuchin, ed., Proc. SPIE 5474, 181-191 (2004). [CrossRef]
  61. K. V. Larin, T. V. Ashitkov, I. Larina, I. Petrova, M. Eledrisi, M. Motamedi, and R. O. Esenaliev, "Optical coherence tomography and noninvasive blood glucose monitoring: a review," in Saratov Fall Meeting 2003: Optical Technologies in Biophysics and Medicine V, V. V. Tuchin, ed., Proc. SPIE 5474, 285-290 (2004). [CrossRef]
  62. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, "Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared," Opt. Lett. 19, 2062-2064 (1994). [CrossRef] [PubMed]
  63. E. I. Galanzha, V. V. Tuchin, Q. Luo, and H. Chen, "The effects of different doses of glucose on scattering properties of skin," in Saratov Fall Meeting 2001: Optical Technologies in Biophysics and Medicine III, V. V. Tuchin, ed., Proc. SPIE 4707, 244-247 (2002). [CrossRef]
  64. R. K. Wang and V. V. Tuchin, "Enhance light penetration in tissue for high resolution optical imaging techniques by the use of biocompatible chemical agents," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE 4956, 314-319 (2003). [CrossRef]
  65. J. Qu and B. C. Wilson, "Monte Carlo modeling studies of the effect of physiological factors and other analytes on the determination of glucose concentration in vivo by near infrared optical absorption and scattering measurements," J. Biomed. Opt. 2, 319-325 (1997). [CrossRef]
  66. B. Chance, H. Liu, T. Kitai, and Y. Zhang, "Effects of solutes on optical properties of biological materials: models, cells, and tissues," Anal. Biochem. 227, 351-362 (1995). [CrossRef] [PubMed]
  67. J. C. Pickup, G. W. Shaw, and D. J. Claremont, "In vivo molecular sensing in diabetes mellitus: an inplantable glucose sensor with direct electron transfer," Diabetologia 32, 213-217 (1989). [CrossRef] [PubMed]
  68. K. V. Larin, T. Akkin, R. O. Esenaliev, M. Motamedi, and T. E. Milner, "Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentration," Appl. Opt. 43, 3408-3414 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited