OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 12 — Apr. 20, 2006
  • pp: 2643–2655

Real-time photodisplacement microscope for high-sensitivity simultaneous surface and subsurface inspection

Toshihiko Nakata, Kazushi Yoshimura, and Takanori Ninomiya  »View Author Affiliations


Applied Optics, Vol. 45, Issue 12, pp. 2643-2655 (2006)
http://dx.doi.org/10.1364/AO.45.002643


View Full Text Article

Enhanced HTML    Acrobat PDF (1826 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a new photodisplacement microscope system for practical use that achieves high-sensitivity simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed interferogram. In this system a linear region of photothermal displacement is excited on the sample surface for subsurface imaging by a line-focused intensity-modulated laser beam. Surface information such as reflectivity and topography along with the displacement is detected with a charge-coupled device sensor-based parallel heterodyne interferometer. Surface and subsurface information components are space-frequency multiplexed into the sensor signal as orthogonal functions based on a frequency-optimized undersampling scheme, allowing each to be discretely reproduced by using a real-time Fourier analysis technique. Preliminary experiments demonstrate that this system is effective, simultaneously imaging reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects in silicon, at a remarkable speed of only 0.26   s / 256 × 256 pixel area. This new microscope is promising for nondestructive hybrid surface and subsurface inspection and other applications.

© 2006 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(040.2840) Detectors : Heterodyne
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(110.5120) Imaging systems : Photoacoustic imaging
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(350.5340) Other areas of optics : Photothermal effects

History
Original Manuscript: July 12, 2005
Manuscript Accepted: October 25, 2005

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Toshihiko Nakata, Kazushi Yoshimura, and Takanori Ninomiya, "Real-time photodisplacement microscope for high-sensitivity simultaneous surface and subsurface inspection," Appl. Opt. 45, 2643-2655 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-12-2643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley Interscience, 1980), pp. 170- 173, 295-296.
  2. Y. H. Wong, R. L. Thomas, and J. J. Pouch, " Subsurface structures of solids by scanning photoacoustic microscopy," Appl. Phys. Lett. 35, 368- 369 ( 1979). [CrossRef]
  3. Y. H. Wong, R. L. Thomas, and G. F. Hawkins, " Surface and subsurface structure of solids by laser photoacoustic spectroscopy," Appl. Phys. Lett. 32, 538- 539 ( 1978). [CrossRef]
  4. A. C. Boccara, D. Fournier, and J. Badoz, " Thermo-optical spectroscopy:detection by the'mirage effect'," Appl. Phys. Lett. 36, 130- 132 ( 1980). [CrossRef]
  5. J. C. Murphy and C. Aamodt, " Photothermal spectroscopy using optical beam probing:mirage effect," J. Appl. Phys. 51, 4580- 4588 ( 1980). [CrossRef]
  6. M. A. Olmstead and N. M. Amer, " A new probe of the optical properties of surfaces," J. Vac. Sci. Technol. B 1, 751- 755 ( 1983). [CrossRef]
  7. P. E. Nordal and S. O. Kanstad, " Photothermal radiometry," Phys. Sci. (Sweden) 20, 659- 662 ( 1979). [CrossRef]
  8. A. Rosencwaig and G. Busse, " High-resolution photoacoustic thermal-wave microscopy," Appl. Phys. Lett. 36, 725- 727 ( 1980). [CrossRef]
  9. T. Nakata, Y. Kembo, T. Kitamori, and T. Sawada, " Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope," Jpn. J. Appl. Phys. Suppl. 31-1, 146- 148 ( 1992).
  10. B. Witowski, W. L. Smith, and D. L. Willenborg, " Nondestructive technique for the detection of dislocations and stacking faults on silicon wafers," Appl. Phys. Lett. 52, 640- 642 ( 1988). [CrossRef]
  11. A. Rosencwaig and R. M. White, " Ion implant monitoring with thermal wave technology," Appl. Phys. Lett. 47, 584- 586 ( 1985). [CrossRef]
  12. H. I. Ringermacher and C. A. Kittredge, " Laser-in/laser-out photoacoustics using Doppler heterodyne interferometry," in Proceedings of the 1986 Ultrasonic Symposium (Institute of Electrical and Electronics Engineers, 1986), pp. 407- 410.
  13. K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, " Thermal wave imaging of closed cracks in opaque solids," J. Appl. Phys. 54, 6245- 6255 ( 1983). [CrossRef]
  14. I. Kaufman, P. T. Chang, H. S. Hsu, W. Y. Huang, and D. Y. Shyong, " Photothermal radiometric detection and imaging of surface cracks," J. Nondestruct. Eval. 6, 87- 100 ( 1987). [CrossRef]
  15. J. Hartikainen, " Fast photothermal measurement system for inspection of weak adhesion defects," Appl. Phys. Lett. 55, 1188- 1190 ( 1989). [CrossRef]
  16. S. Ameri, E. A. Ash, V. Neuman, and C. R. Petts, " Photodisplacement imaging," Electron. Lett. 17, 337- 338 ( 1981). [CrossRef]
  17. N. M. Amer and M. A. Olmstead, " A novel method for the study of optical properties of surfaces," Surf. Sci. 132, 68- 72 ( 1983). [CrossRef]
  18. L. C. M. Miranda, " Photodisplacement spectroscopy of solids: theory," Appl. Opt. 22, 2882- 2886 ( 1983). [CrossRef] [PubMed]
  19. J. -P. Monchalin, R. Heon, and N. Muzak, " Evaluation of ultrasonic inspection procedures by field mapping with an optical probe," Can. Metall. Q. 25, 247- 252 ( 1986).
  20. H. Takamatsu, Y. Nishimoto, and Y. Nakai, " Photodisplacement measurement by interferometric laser probe," Jpn. J. Appl. Phys. 29, 2847- 2850 ( 1990). [CrossRef]
  21. N. A. Massie, R. D. Nelson, and S. Holly, " High-performance real-time heterodyne interferometry," Appl. Opt. 18, 1797- 1803 ( 1979). [CrossRef] [PubMed]
  22. T. Nakata, H. H. Kobayashi, and T. Ninomiya, " Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration," in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, 1993), pp. 81- 82.
  23. T. Nakata and T. Ninomiya, " Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection:a numerical study," Appl. Opt. 43, 3287- 3296 ( 2004). [CrossRef] [PubMed]
  24. T. Nakata and T. Ninomiya, " A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging," J. Appl. Phys. 96, 6970- 6980 ( 2004). [CrossRef]
  25. T. Nakata and T. Ninomiya, " Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry," J. Appl. Phys. 97, 103110 1- 7 ( 2005). [CrossRef]
  26. T. Nakata and T. Ninomiya, " Simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed photodisplacement interferogram," Appl. Opt. 44, 5809- 5817 ( 2005). [CrossRef] [PubMed]
  27. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 1965), Chap. 10.
  28. Frequency Stabilization He-Ne Laser FS-1M, product catalog (Photon Probe, Inc., 1-6-2 Higashihirayama, Hino, Tokyo 191-0054 Japan, 2003).
  29. Frequency Shifter FS-1S, product catalog (Photon Probe, Inc., 1-6-2 Higashihirayama, Hino, Tokyo 191-0054 Japan, 2003).
  30. D Series Linear Charge-Coupled Photodiode Array RL0256D, product catalog (EG&G Reticon Co., 345 Potrero Avenue, Sunnyvale, Calif. 94086-4197, 1987).
  31. L. Chen, K. H. Yang, and Y. Zhang, " New technique of photodisplacement imaging using one laser for both excitation and detection," Appl. Phys. Lett. 50, 1349- 1351 ( 1987). [CrossRef]
  32. Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, and T. Koda, " Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy," Nondestr. Test. Eval. 8-9, 1013- 1023 ( 1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited