OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 12 — Apr. 20, 2006
  • pp: 2796–2804

Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements

Jens Reichardt and Susanne Reichardt  »View Author Affiliations


Applied Optics, Vol. 45, Issue 12, pp. 2796-2804 (2006)
http://dx.doi.org/10.1364/AO.45.002796


View Full Text Article

Enhanced HTML    Acrobat PDF (999 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is presented that permits the determination of the cloud effective particle size from Raman- or Rayleigh-integration temperature measurements that exploits the dependence of the multiple-scattering contributions to the lidar signals from heights above the cloud on the particle size of the cloud. Independent temperature information is needed for the determination of size. By use of Raman-integration temperatures, the technique is applied to cirrus measurements. The magnitude of the multiple-scattering effect and the above-cloud lidar signal strength limit the method's range of applicability to cirrus optical depths from 0.1 to 0.5. Our work implies that records of stratosphere temperature obtained with lidar may be affected by multiple scattering in clouds up to heights of 30 km and beyond.

© 2006 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.4210) Scattering : Multiple scattering
(290.5860) Scattering : Scattering, Raman

History
Original Manuscript: July 27, 2005
Revised Manuscript: December 5, 2005
Manuscript Accepted: December 6, 2005

Citation
Jens Reichardt and Susanne Reichardt, "Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements," Appl. Opt. 45, 2796-2804 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-12-2796


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. L. Stephens, S. -C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, " The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," J. Atmos. Sci. 47, 1742- 1753 ( 1990). [CrossRef]
  2. M. B. Baker, " Cloud microphysics and climate," Science 276, 1072- 1078 ( 1997). [CrossRef]
  3. S. A. Young, C. M. R. Platt, R. T. Austin, and G. R. Patterson, " Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS," J. Appl. Meteorol. 39, 135- 153 ( 2000). [CrossRef]
  4. J. M. Intrieri, G. L. Stephens, W. L. Eberhard, and T. Uttal, " A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique," J. Appl. Meteorol. 32, 1074- 1082 ( 1993). [CrossRef]
  5. D. P. Donovan and A. C. A. P. van Lammeren, " Cloud effective particle size and water content profile retrievals using combined lidar and radar observations. 1. Theory and examples," J. Geophys. Res. 108, 27,425- 27,448 ( 2001).
  6. E. W. Eloranta, " Practical model for the calculation of multiply scattered lidar returns," Appl. Opt. 37, 2464- 2472 ( 1998). [CrossRef]
  7. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, " Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt. 41, 6307- 6324 ( 2002). [CrossRef] [PubMed]
  8. U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, " Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar," Appl. Opt. 34, 8315- 8329 ( 1995). [CrossRef] [PubMed]
  9. J. Reichardt, A. Dörnbrack, S. Reichardt, P. Yang, and T. J. McGee, " Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling," Atmos. Chem. Phys. 4, 1149- 1165 ( 2004). [CrossRef]
  10. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, " Atmospheric temperature measurements made by rotational Raman scattering," Appl. Opt. 32, 2758- 2764 ( 1993). [CrossRef] [PubMed]
  11. A. Hauchecorne, M. L. Chanin, P. Keckhut, and D. Nedeljkovic, " Lidar monitoring of the temperature in the middle and lower atmosphere," Appl. Phys. B 55, 29- 34 ( 1992). [CrossRef]
  12. P. Keckhut, M. L. Chanin, and A. Hauchecorne, " Stratosphere temperature measurement using Raman lidar," Appl. Opt. 29, 5182- 5186 ( 1990). [CrossRef] [PubMed]
  13. J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, " Combined Raman lidar for aerosol, ozone, and moisture measurements," Opt. Eng. 35, 1457- 1465 ( 1996). [CrossRef]
  14. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, " Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113- 7131 ( 1992). [CrossRef] [PubMed]
  15. J. Reichardt, M. Hess, and A. Macke, " Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions," Appl. Opt. 39, 1895- 1910 ( 2000). [CrossRef]
  16. J. Reichardt, " Error analysis of Raman differential absorption lidar ozone measurements in ice clouds," Appl. Opt. 39, 6058- 6071 ( 2000). [CrossRef]
  17. J. Reichardt, S. Reichardt, M. Hess, and T. J. McGee, " Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation," J. Geophys. Res. 107(D21), 4562, doi: ( 2002). [CrossRef]
  18. A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, " Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4 °N," J. Atmos. Sci. 54, 2630- 2641 ( 1997). [CrossRef]
  19. L. R. Bissonnette and G. Roy, " Lidar multiple scattering retrieval: Monte Carlo validation, field tests, and a case study," in Review and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), ESA doc. SP-561 (European Space Agency, 2004), pp. 313- 316.
  20. B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990). [CrossRef]
  21. P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001). [CrossRef]
  22. J. Reichardt and S. Reichardt, " Multiple-scattering effect on integration-method temperature measurements: determination of cloud effective particle size," in Review and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), ESA doc. SP-561 (European Space Agency, 2004), pp. 403- 406.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited