Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Steady-state directional diffuse reflectance and fluorescence of human skin

Not Accessible

Your library or personal account may give you access

Abstract

We present numerical simulations predicting the directional diffuse reflectance and autofluorescence from human skin. Skin is modeled as a seven-layered medium, with each layer having its own optical properties and fluorophore concentrations. Both collimated and diffuse monochromatic excitation at 442  nm are considered. In addition, the effect of an index-matching cream used to eliminate total internal reflection within the skin is assessed. We compute the intensity distributions of the excitation and fluorescence light in the skin by solving the radiative transfer equation using the modified method of characteristics. It was found that the use of an index-matching cream reduces the directional fluorescence signal while increasing the directional diffuse reflectance from the skin for collimated excitation. On the other hand, both the fluorescence and diffuse reflectance increase for diffuse excitation with an index-matching cream. Moreover, the directional fluorescence intensity obtained by use of collimated excitation is larger than that obtained by use of diffuse excitation light. This computational tool could be valuable in designing optical devices for biomedical applications.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Feasibility analysis of an epidermal glucose sensor based on time-resolved fluorescence

Kamal M. Katika and Laurent Pilon
Appl. Opt. 46(16) 3359-3368 (2007)

Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo

Hans Georg Breunig, Hauke Studier, and Karsten König
Opt. Express 18(8) 7857-7871 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved