Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable Bragg filters based on polymer swelling

Not Accessible

Your library or personal account may give you access

Abstract

We report on the optical properties of Bragg mirrors and filters fabricated from photo-cross-linked standard optical polymers. The transmittance spectra of these devices in the visible to near-infrared spectral range were measured. We demonstrate efficient tuning of the filter peak of the polymer Bragg filters over several hundred nanometers by adding organic solvents to the surrounding atmosphere of the filter. This represents what we believe to be a novel tuning principle for Bragg filters relying on the use of polymeric materials.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector

Kyung-Jo Kim, Jun-Kyu Seo, and Min-Cheol Oh
Opt. Express 16(3) 1423-1430 (2008)

Fast fiber-optic tunable filter based on axial compression on a fiber Bragg grating

Wen Zu and Xijia Gu
Appl. Opt. 45(25) 6457-6462 (2006)

Optically tunable guided-mode resonance filter

Dennis W. Dobbs and Brian T. Cunningham
Appl. Opt. 45(28) 7286-7293 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved