OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 21 — Jul. 20, 2006
  • pp: 5168–5184

Systematic effects induced by a flat isotropic dielectric slab

Claudio Macculi, Mario Zannoni, Oscar Antonio Peverini, Ettore Carretti, Riccardo Tascone, and Stefano Cortiglioni  »View Author Affiliations

Applied Optics, Vol. 45, Issue 21, pp. 5168-5184 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The instrumental polarization induced by a flat isotropic dielectric slab in microwave frequencies is discussed. We find that, in spite of its isotropic nature, such a dielectric can produce spurious polarization either by transmitting incoming anisotropic diffuse radiation or emitting when it is thermally inhomogeneous. We present evaluations of instrumental polarization generated by materials usually adopted in radio astronomy, by using the Mueller matrix formalism. As an application, results for different slabs in front of a 32   GHz receiver are discussed. Such results are based on measurements of their complex dielectric constants. We evaluate that a 0 .33   cm thick Teflon slab introduces negligible spurious polarization ( < 2 .6 × 10 5 in transmission and < 6 × 10 7 in emission), even minimizing the leakage ( < 10 8 from Q to U Stokes parameters, and vice versa) and the depolarization ( 1.3 × 10 3 ) .

© 2006 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(350.1260) Other areas of optics : Astronomical optics
(350.4010) Other areas of optics : Microwaves
(350.5500) Other areas of optics : Propagation

ToC Category:
Polarization-Sensitive Devices

Original Manuscript: September 23, 2005
Revised Manuscript: January 16, 2006
Manuscript Accepted: January 25, 2006

Claudio Macculi, Mario Zannoni, Oscar Antonio Peverini, Ettore Carretti, Riccardo Tascone, and Stefano Cortiglioni, "Systematic effects induced by a flat isotropic dielectric slab," Appl. Opt. 45, 5168-5184 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. de Oliveira-Costa, "The cosmic microwave background and its polarization," in Astronomical Polarimetry: Current Status and Future Directions, A. Adamson, C. Aspin, and C. J. Davis, eds., Astron. Soc. Pac. Conf. Ser. 343, 485 (2005).
  2. S. Cortiglioni, G. Bernardi, E. Carretti, S. Cecchini, C. Macculi, C. Sbarra, G. Ventura, M. Baralis, O. Peverini, R. Tascone, S. Bonometto, L. Colombo, G. Sironi, M. Zannoni, V. Natale, R. Nesti, R. Fabbri, J. Monari, M. Poloni, S. Poppi, L. Nicastro, A. Boscaleri, P. de Bernardis, S. Masi, M. V. Sazhin, and E. N. Vinyajkin, "BaR-SPOrt: an experiment to measure the linearly polarized sky emission from both the cosmic microwave background and foreground," in Proceedings of the 16th ESA Symposium on European Rocket and Balloon Programmes and Related Research, B.Warmbein, ed. (ESA, 2003), Vol. sp-530, pp. 271-277. In this proceeding, the BaR-SPOrt experiment is shown with regard to the scientific and technological points of view.
  3. M. Zannoni, C. Macculi, E. Carretti, S. Cortiglioni, G. Ventura, J. Monari, M. Poloni, and S. Poppi, "Thermal design and performance evaluation of the BaR-SPOrt cryosta," in Astronomical Telescopes and Instrumentation.J.Antebi and D.Lemke, eds. Proc. SPIE 5498,735-743 (2004). The goal of this proceeding is to discuss in detail both the thermal design of the cryostat housing the instrument and the preliminary test.
  4. B. Keating, P. Timbie, A. Polnarev, and J. Steinberger, "Large angular scale polarization of the cosmic microwave background radiation and the feasibility of its detection," Astrophys. J. 495, 580-596 (1998). [CrossRef]
  5. B. Keating, P. Ade, J. Bock, E. Hivon, W. Holzapfel, A. Lange, H. Nguyen, Ki W. Yoon, "BICEP: a large angular scale CMB Polarimeter," in Polarimetry in Astronomy, S.Fineschi, ed. Proc. SPIE 4843,284-295 (2003). This proceeding reports both the design and expected performances of BICEP (which stands for background imaging of cosmic extragalactic polarization), a millimeter wave receiver (bolometer based) designed to measure the polarization of the cosmic microwave background.
  6. P. Farese, G. Dall'Oglio, J. Gundersen, B. Keating, S. Klawikowski, L. Knox, A. Levy, P. Lubin, C. O'Dell, A. Peel, L. Piccirillo, J. Ruhl, and P. Timbie, "COMPASS: an upper limit on cosmic microwave background polarization at an angular scale of 20′," Astrophys. J. 610, 625-634 (2004). [CrossRef]
  7. E. Leitch, J. Kovac, C. Pryke, J. Carlstrom, N. Halverson, W. Holzapfel, M. Dragovan, B. Reddall, and E. Sandberg, "Measurement of polarization with the degree angular scale interferometer," Nature 420, 763-771 (2002). [CrossRef] [PubMed]
  8. S. Masi, P. Cardoni, P. de Bernardis, F. Piacentini, A. Raccanelli, and F. Scaramuzzi, "A long duration cryostat suitable for balloon borne photometry," Cryogenics 39, 217-224 (1999). [CrossRef]
  9. L. J. November, "Determination of the Jones matrix for the Sacramento peak vacuum tower telescope," Opt. Eng. 28, 107-113 (1989).
  10. E. Collett, Polarized Light (Marcel Dekker, 1993).
  11. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970).
  12. O. E. Piro, "Optical properties, reflectance, and transmittance of anisotropic absorbing crystal plates," Phys. Rev. B 36, 3427-3435 (1987). [CrossRef]
  13. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  14. F. Bréhat and B. Wyncke, "Reflectivity, transmissivity, and optical constants of anisotropic absorbing crystals," J. Phys. D 24, 2055-2066 (1991). [CrossRef]
  15. J. D. Kraus, Radio Astronomy (Cygnus Quasar Books, 1986).
  16. D. Jordan, G. Lewis, and E. Jakeman, "Emission polarization of roughened glass and aluminum surfaces," Appl. Opt. 35, 3583-3590 (1996). [CrossRef] [PubMed]
  17. E. Carretti, R. Tascone, S. Cortiglioni, J. Monari, and M. Orsini, "Limits due to instrumental polarization in CMB experiments at microwave wavelengths," New Astron. 6, 173-187 (2001). [CrossRef]
  18. E. Carretti, S. Cortiglioni, C. Sbarra, and R. Tascone, "Antenna instrumental polarization and its effects on E- and B-modes for CMBP observations," Astron. Astrophys. 420, 437-445 (2004). [CrossRef]
  19. C. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. Meyer, L. Page, D. Spergel, G. Tucker, E. Wollack, E. Wright, C. Barnes, M. Greason, R. Hill, E. Komatsu, M. Nolta, N. Odegard, H. Peiris, L. Verde, and J. Weiland, "First year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results," Astrophys. J. Suppl. Ser. 148, 1-27 (2003). [CrossRef]
  20. C. Netterfield, P. Ade, J. Bock, J. Bond, J. Borrill, A. Boscaleri, K. Coble, C. Contaldi, B. Crill, P. de Bernardis, P. Farese, K. Ganga, M. Giacometti, E. Hivon, V. Hristov, A. Iacoangeli, A. Jaffe, W. Jones, A. Lange, L. Martinis, S. Masi, P. Mason, P. Mauskopf, A. Melchiorri, T. Montroy, E. Pascale, F. Piacentini, D. Pogosyan, F. Pongetti, S. Prunet, G. Romeo, J. Ruhl, and F. Scaramuzzi, "A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background," Astrophys. J. 571, 604-614 (2002). [CrossRef]
  21. M. N. Afsar, "Precision dielectric measurements of nonpolar polymers in the millimeter wavelength range," IEEE Trans. Microwave Theory Tech. 33, 1410-1415 (1985). [CrossRef]
  22. M. Sazhin, G. Sironi, and O. Khovanskaya, "Separation of foreground and background signals in single frequency measurements of the CMB polarization," New Astron. 9, 83-101 (2004). [CrossRef]
  23. J. Baker-Jarvis, E. Vanzura, and W. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microwave Theory Tech. 38, 1096-1103 (1990). [CrossRef]
  24. R. G. Jones, "Precise dielectric measurements at 35 GHz using an open microwave resonator," Proc. IEE 123, 285-290 (1976). This proceeding reports the determination of the permittivity and the electric tangent loss of HDPE and Teflon at 35 GHz, by means of a test in which an open microwave resonator is adopted.
  25. D. Vaccaneo, R. Tascone, and R. Orta, "Adaptive cavity for complex permittivity measurement of rock materials," in Proceedings of URSI EMTS 2004 International Symposium on Electromagnetic Theory (2004), pp. 522-524. In this proceeding, a new setup based on an adaptive cavity for the accurate measurement of the complex permittivity of materials is described.
  26. B. Read, J. Duncan, and D. Meyer, "Birefringence techniques for the assessment of orientation," Polym. Test. 4, 143-164 (1984). [CrossRef]
  27. J. R. White, "Origins and measurement of internal stress in plastics," Polym. Test. 4, 165-191 (1984). [CrossRef]
  28. S. Cortiglioni, G. Bernardi, E. Carretti, L. Casarini, S. Cecchini, C. Macculi, M. Ramponi, C. Sbarra, J. Monari, A. Orfei, M. Poloni, S. Poppi, G. Boella, S. Bonometto, L. Colombo, M. Gervasi, G. Sironi, M. Zannoni, M. Baralis, O. A. Peverini, R. Tascone, G. Virone, R. Fabbri, V. Natale, L. Nicastro, K-W. Ng, E. N. Vinyajkin, V. A. Razin, M. V. Sazhin, I. A. Strukov, B. Negri, "The Sky Polarization Observatory," New Astron. 9, 297-327, (2004). [CrossRef]
  29. N. Renzo, BaR-SPOrt 32 GHz Horn Design, Technical Report, N. BSPO1.06/03, (CNR-IRA, 2003).
  30. N. Renzo, INAF, Florence, Italy (personal communication, 2004).
  31. P. F. Goldsmith, Quasioptical System: Gaussian Beam Quasioptical Propagation and Applications (IEEE Press, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited