OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 22 — Aug. 1, 2006
  • pp: 5504–5520

Adaptive algorithms for two-channel polarization sensing under various polarization statistics with nonuniform distributions

Konstantin M. Yemelyanov, Shih-Schön Lin, Edward N. Pugh, Jr., and Nader Engheta  »View Author Affiliations

Applied Optics, Vol. 45, Issue 22, pp. 5504-5520 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2707 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarization of light carries much useful information about the environment. Biological studies have shown that some animal species use polarization information for navigation and other purposes. It has been previously shown that a bioinspired polarization-difference imaging (PDI) technique can facilitate detection and feature extraction of targets in scattering media. It has also been established [J. Opt. Soc. Am. A 15, 359 (1998)] that polarization sum and polarization difference are the optimum pair of linear combinations of images taken through two orthogonally oriented linear polarizers of a scene having a uniform distribution of polarization directions. However, in many real environments the scene has a nonuniform distribution of polarization directions. Using principal component analysis of the polarization statistics of the scene, we develop a method to determine the two optimum information channels with unequal weighting coefficients that can be formed as linear combinations of the images of a scene taken through a pair of linear polarizers not constrained to the horizontal and vertical directions of the scene. We determine the optimal orientations of linear polarization filters that enhance separation of a target from the background, where the target is defined as an area with distinct polarization characteristics as compared to the background. Experimental results confirm that in most situations adaptive PDI outperforms conventional PDI with fixed channels.

© 2006 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(110.2970) Imaging systems : Image detection systems
(260.5430) Physical optics : Polarization
(330.1880) Vision, color, and visual optics : Detection
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
System Modeling and Optimization

Original Manuscript: November 4, 2005
Revised Manuscript: March 11, 2006
Manuscript Accepted: March 13, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Konstantin M. Yemelyanov, Shih-Schön Lin, Edward N. Pugh, Jr., and Nader Engheta, "Adaptive algorithms for two-channel polarization sensing under various polarization statistics with nonuniform distributions," Appl. Opt. 45, 5504-5520 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. A. Shurcliff, Polarized Light, Production and Use (Harvard U. Press, 1962).
  2. D. Goldstein, Polarized Light (Dekker, 2003). [CrossRef]
  3. J. E. Solomon, "Polarization imaging," Appl. Opt. 20, 1537-1544 (1981). [CrossRef] [PubMed]
  4. S. Demos and R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997). [CrossRef] [PubMed]
  5. L. B. Wolff, "Polarization camera for computer vision with a beam splitter," J. Opt. Soc. Am. A 11, 2935-2945 (1994). [CrossRef]
  6. L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13, 195-203 (1997). [CrossRef]
  7. L. B. Wolff and A. G. Andreou, "Polarization camera sensors," Image Vis. Comput. 13, 497-510 (1995). [CrossRef]
  8. W. G. Egan, W. R. Johnson, and V. S. Whitehead, "Terrestrial polarization imagery obtained from the Space Shuttle: characterization and interpretation," Appl. Opt. 30, 435-442 (1991). [CrossRef] [PubMed]
  9. F. Goudail, P. Terrier, Y. Takakura, L. Bigue, F. Galland, and V. DeVlaminck, "Target detection with a liquid-crystal-based passive Stokes polarimeter," Appl. Opt. 43, 274-282 (2004). [CrossRef] [PubMed]
  10. F. Goudail and P. Réfrégier, "Statistical algorithms for target detection in coherent active polarimetric images," J. Opt. Soc. Am. A 18, 3049-3060 (2001). [CrossRef]
  11. F. Goudail and P. Réfrégier, "Statistical techniques for target detection in polarization diversity images," Opt. Lett. 26, 644-646 (2001). [CrossRef]
  12. J. S. Tyo, M. P. Rowe, E. N. Pugh, Jr., and N. Engheta, "Target detection in optically scattered media by polarization-difference imaging," Appl. Opt. 35, 1855-1870 (1996). [CrossRef] [PubMed]
  13. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, "Polarization-based vision through haze," Appl. Opt. 42, 511-525 (2003). [CrossRef] [PubMed]
  14. Y. Y. Schechner and N. Karpel, "Clear underwater vision," in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 536-543.
  15. Y. Y. Schechner and N. Karpel, "Recovery of underwater visibility and structure by polarization analysis," IEEE J. Ocean. Eng. 30, 570-587 (2005). [CrossRef]
  16. Y. Y. Schechner, J. Shamir, and N. Kiryati, "Vision through semireflecting media: polarization analysis," Opt. Lett. 24, 1088-1090 (1999). [CrossRef]
  17. P. C. Y. Chang, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker, "Improving visibility depth in passive underwater imaging by use of polarization," Appl. Opt. 42, 2794-2803 (2003). [CrossRef] [PubMed]
  18. J. G. Walker, P. C. Y. Chang, and K. I. Hopcraft, "Visibility depth improvement in active polarization imaging in scattering media," Appl. Opt. 39, 4933-4941 (2000). [CrossRef]
  19. H. Wang, C. Sun, Y. Wang, Y. Kiang, and C. Yang, "Determination of the depth of a scattering target in a turbid medium with polarization discrimination of transmitted signals," Opt. Lett. 28, 25-27 (2003). [CrossRef] [PubMed]
  20. S. G. Demos, W. B. Wang, and R. R. Alfano, "Imaging objects hidden in scattering media with fluorescence polarization preservation of contrast agents," Appl. Opt. 37, 792-797 (1998). [CrossRef]
  21. A. M. Wallace, B. Liang, E. Trucco, and J. Clark, "Improving depth acquisition using polarized light," Int. J. Comput. Vis. 32, 87-109 (2001). [CrossRef]
  22. R. Nothdurft and G. Yao, "Expression of target optical properties in subsurface polarization-gated imaging," Opt. Express 13, 4185-4195 (2005). [CrossRef] [PubMed]
  23. H. Chen and L. B. Wolff, "Polarization phase-based method for material classification and object recognition in computer vision," in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1996), pp. 128-135.
  24. L. B. Wolff, "Polarization-based material classification from specular reflection," IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059-1071 (1990). [CrossRef]
  25. Although a human visual system does not have an ability to sense polarized light, the polarization still might be perceptible in the form of Haidinger's brush.
  26. K. von Frisch, "Die polarisation des himmelslichtes als orientierender faktor bei den tanzen der biener," Experimentia 5, 142-148 (1949). [CrossRef]
  27. K. von Frisch, Tanzsprache und Orientierung der Bienen (Springer-Verlag, 1965).
  28. K. von Frisch, "Nobel lecture," The Nobel Foundation, http://www.nobel.se/medicine/laureates/1973/frisch-lecture.pdf.
  29. R. Wehner and G. D. Bernard, "Photoreceptor twist: a solution to the false colour problem," in Proceedings of the National Academy of Sciences of the United States of America, 90, 4132-4135 (1993).
  30. R. Wehner, "Polarized-light navigation by insects," Sci. Am. 235, 106-114 (1976). [CrossRef] [PubMed]
  31. R. Wehner, "Neurobiology of polarization vision," Trends Neurosci. 12, 353-359 (1989). [CrossRef] [PubMed]
  32. R. Wehner, "'Matched filters': neural models of the external world," J. Comp. Physiol. A 161, 511-531 (1987). [CrossRef]
  33. I. Pomozi, G. Horváth, and R. Wehner, "How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation," J. Exp. Biol. 204, 2933-2942 (2001). [PubMed]
  34. G. Horváth, J. Gál, T. Labhart, and R. Wehner, "Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies," J. Exp. Biol. 205, 3281-3298 (2002). [PubMed]
  35. T. Labhart, "Polarization opponent interneurones in the insect visual system," Nature 331, 435-437 (1988). [CrossRef]
  36. C. W. Hawryshyn, "Polarization vision in fish," Am. Sci. 80, 164-175, 1992.
  37. C. W. Hawryshyn, "Ultraviolet polarization vision in fishes: possible mechanisms for coding e-vector," Philos. Trans. R. Soc. London , Ser. B 355, 1187-1190 (2000). [CrossRef]
  38. N. Shashar and T. W. Cronin, "Polarization contrast vision in octopus," J. Exp. Biol. 199, 999-1004 (1996). [PubMed]
  39. T. W. Cronin and N. Shashar, "The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle," J. Exp. Biol. 204, 2461-2467 (2001). [PubMed]
  40. N. Shashar, P. S. Rutledge, and T. W. Cronin, "Polarization vision in cuttlefish: a concealed communication channel?" J. Exp. Biol. 199, 2077-2084 (1996). [PubMed]
  41. T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, "Polarization vision and its role in biological signaling," Integr. Comp. Biol. 43, 549-558 (2003). [CrossRef] [PubMed]
  42. M. P. Rowe, E. N. Pugh, Jr., J. S. Tyo, and N. Engheta, "Polarization-difference imaging: a biologically inspired technique for observation through scattering media," Opt. Lett. 20, 608-610 (1995). [CrossRef] [PubMed]
  43. J. S. Tyo, E. N. Pugh, Jr., and N. Engheta, "Colorimetric representation for use with polarization-difference imaging of objects in scattering media," J. Opt. Soc. Am. A 15, 367-374 (1998). [CrossRef]
  44. K. M. Yemelyanov, M. A. Lo, E. N. Pugh, Jr., and N. Engheta, "Display of polarization information by coherently moving dots," Opt. Express 11, 1577-1584 (2003). [CrossRef] [PubMed]
  45. K. M. Yemelyanov, S.-S. Lin, W. Q. Luis, E. N. Pugh, Jr., and N. Engheta, "Bio-inspired display of polarization information using selected visual cues," in Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5158, 71-84 (2003).
  46. T. Labhart, "How polarization-sensitive interneurons perform at low degrees of polarization," J. Exp. Biol. 199, 1467-1475 (1996). [PubMed]
  47. T. Labhart and E. P. Meyer, Neural mechanisms in insect navigation: polarization compass and odometer, Curr. Opin. Neurobiol. 12, 707-714 (2002).
  48. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2002).
  49. W. B. Wang, S. G. Demos, J. Ali, and R. R. Alfano, "Imaging fluorescent objects embedded inside animal tissues using polarization-difference technique," Optics Commun. 142, 161-166 (1997). [CrossRef]
  50. C. K. Hamett and H. G. Craighead, "Liquid-crystal micropolarizer array for polarization-difference imaging," Appl. Opt. 41, 1291-1296 (2002). [CrossRef]
  51. S. P. Schilders, X. S. Gan, and M. Gu, "Resolution improvement in microscopic imaging through turbid media based on differential polarization gating," Appl. Opt. 37, 4300-4303 (1998). [CrossRef]
  52. J. S. Tyo, "Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system," J. Opt. Soc. Am. A 15, 359-366 (1998). [CrossRef]
  53. G. Buchsbaum and A. Gottschalk, "Trichromacy, opponent colors coding and optimum color information transmission in the retina," Proc. R. Soc. London , Ser. B 220, 89-113 (1983). [CrossRef]
  54. I. T. Jolliffe, Principal Component Analysis (Springer-Verlag, 1986).
  55. As regular or conventional PDI in this paper, we always refer to the technique introduced in Ref. 42.
  56. N. A. Macmillan and C. D. Creelman, Detection Theory: A User's Guide (Cambridge U. Press, 1991).
  57. S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, "Polarization enhanced visual surveillance techniques," in Proceedings of IEEE International Conference on Networking, Sensing, and Control (IEEE, 2004), pp. 216-221.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited