OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 22 — Aug. 1, 2006
  • pp: 5777–5782

Precisely introducing defects into periodic structures by using a double-step laser scanning technique

Ngoc Diep Lai, Jian Hung Lin, Wen Ping Liang, Chia Chen Hsu, and Cheng Hsiung Lin  »View Author Affiliations


Applied Optics, Vol. 45, Issue 22, pp. 5777-5782 (2006)
http://dx.doi.org/10.1364/AO.45.005777


View Full Text Article

Enhanced HTML    Acrobat PDF (1236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a promising method to precisely introduce desired defects into large-area periodic structures by using a double-step laser scanning technique. A multiexposure two-beam interference technique is first used to create 2D periodic structures. A low power femtosecond laser combined with a high numerical aperture objective lens is then used to map the periodic structures to determine the positions and orientations of air holes or material cylinders without intermediate development. Based on the mapping results, the desired defects are written precisely into these structures by increasing the power of the femtosecond laser to induce a multiphoton polymerization effect. The experimental results show that defects are patterned with accurate positions and orientations. This proposed technique should be useful for fabrication of photonic crystals with well-defined defects.

© 2006 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(110.5220) Imaging systems : Photolithography
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 3, 2006
Revised Manuscript: March 8, 2006
Manuscript Accepted: March 13, 2006

Citation
Ngoc Diep Lai, Jian Hung Lin, Wen Ping Liang, Chia Chen Hsu, and Cheng Hsiung Lin, "Precisely introducing defects into periodic structures by using a double-step laser scanning technique," Appl. Opt. 45, 5777-5782 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-22-5777


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  2. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998). [CrossRef] [PubMed]
  3. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939 (2000). [CrossRef]
  4. T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001). [CrossRef]
  5. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003). [CrossRef]
  6. S. Wong, V. Kitaev, and G. A. Ozin, "Colloidal crystal films: advances in universality and perfection," J. Am. Chem. Soc. 125, 15589-15598 (2003). [CrossRef] [PubMed]
  7. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997). [CrossRef]
  8. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  9. S. Shoji and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin," Appl. Phys. Lett. 76, 2668-2670 (2000). [CrossRef]
  10. A. Shishido, I. B. Diviliansky, I. C. Khoo, T. S. Mayer, S. Nishimura, G. L. Egan, and T. E. Mallouk, "Direct fabrication of two-dimensional titania arrays using interference photolithography," Appl. Phys. Lett. 79, 3332-3334 (2001). [CrossRef]
  11. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001). [CrossRef]
  12. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002). [CrossRef]
  13. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003). [CrossRef]
  14. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004). [CrossRef]
  15. Y. Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, and Y. L. Chen, "Photonic crystal with diamondlike structure fabricated by holographic lithography," Appl. Phys. Lett. 87, 061103 (2005). [CrossRef]
  16. H. B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett. 74, 786-788 (1999). [CrossRef]
  17. M. Straub and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt. Lett. 27, 1824-1826 (2002). [CrossRef]
  18. V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett. 29, 2061-2063 (2004). [CrossRef] [PubMed]
  19. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). [CrossRef] [PubMed]
  20. W. Lee, S. A. Pruzinsky, and P. V. Braun, "Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals," Adv. Mater. 14, 271-274 (2002). [CrossRef]
  21. L. Pang, W. Nakagawa, and Y. Fainman, "Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write," Appl. Opt. 42, 5450-5456 (2003). [CrossRef] [PubMed]
  22. C. Moormann, J. Bolten, and H. Kurz, "Spatial phase-locked combination lithography for photonic crystal devices," Microelectron. Eng. 73-74, 417-422 (2004). [CrossRef]
  23. L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Flück, L. Kuipers, and N. F. van Hulst, "Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography," Adv. Mater. 13, 1551-1554 (2001). [CrossRef]
  24. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, "Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques," Opt. Express 13, 5331-5337 (2005). [CrossRef] [PubMed]
  25. H. B. Sun, A. Nakamura, K. Kaneko, S. Shoji, and S. Kawata, "Direct laser writing defects in holographic lithography-created photonic lattices," Opt. Lett. 30, 881-883 (2005). [CrossRef] [PubMed]
  26. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, "Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique," Opt. Express 13, 9605-9611 (2005). [CrossRef] [PubMed]
  27. N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, "Controlling aspect ratio of focal spots of micro-focus-region of high numerical aperture objective lens in multi-photon absorption process," Opt. Commun. 258, 97-102 (2006). [CrossRef]
  28. A. Sopaheluwakan, "Defect states and defect modes in 1D photonic crystals," Ph.D. dissertation (University of Twente, The Netherlands, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited