OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 45, Iss. 26 — Sep. 10, 2006
  • pp: 6781–6784

Phase geographical map for determining the material type of a right-angle prism

Ming-Hung Chiu, Chih-Wen Lai, Shinn-Fwu Wang, Der-Chin Su, and Springfield Chang  »View Author Affiliations


Applied Optics, Vol. 45, Issue 26, pp. 6781-6784 (2006)
http://dx.doi.org/10.1364/AO.45.006781


View Full Text Article

Enhanced HTML    Acrobat PDF (111 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A phase geographical map for determining a right-angle prism is presented. The proposed method is based on total-internal-reflection effects and chromatic dispersion. Under the total-internal-reflection condition, the phase difference between the S and P polarizations, as a function of the wavelength and refractive index, can be extracted and measured using heterodyne interferometry. Various wavelengths correspond to various refractive index values. The proposed map is convenient in ensuring the prism material using a specific V number. The method has the following merits: high stability, ease of operation, and rapid measurement.

© 2006 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(160.4670) Materials : Optical materials
(260.2030) Physical optics : Dispersion
(260.6970) Physical optics : Total internal reflection

History
Original Manuscript: November 14, 2005
Revised Manuscript: December 21, 2005
Manuscript Accepted: April 13, 2006

Citation
Ming-Hung Chiu, Chih-Wen Lai, Shinn-Fwu Wang, Der-Chin Su, and Springfield Chang, "Phase geographical map for determining the material type of a right-angle prism," Appl. Opt. 45, 6781-6784 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-26-6781


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Hunter, "Error in using the reflectance vs angle of incidence method for measuring optical constants," J. Opt. Soc. Am. 55, 1197-1204 (1965).
  2. R. F. Miller, A. J. Taylor, and L. S. Julien, "The optimum angle of incidence for determining optical constants from reflectance measurements," J. Phys. D 3, 1957-1961 (1970). [CrossRef]
  3. P. C. Logofǎtu, D. Apostol, V. Damian, and R. Tumbar, "Optimum angles for determining the optical constants from reflectivity measurements," Meas. Sci. Technol. 7, 52-57 (1996). [CrossRef]
  4. P. P. Herrmann, "Determination of thickness, refractive index, and dispersion of wave guiding thin films with an Abbe refractometer," Appl. Opt. 19, 3262-3262 (1980).
  5. P. R. Jarvis and G. H. Meeten, "Critical-angle measurement of refractive index of absorbing materials: an experimental study," J. Phys. E 19, 296-298 (1986). [CrossRef]
  6. G. H. Meeten and A. N. North, "Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle," Meas. Sci. Technol. 6, 214-221 (1995). [CrossRef]
  7. A. C. Traub and H. Osterberb, "Brewster angle apparatus for thin film index measurement," J. Opt. Soc. Am. 47, 62-69 (1957).
  8. S. P. F. Humphreys-Owen, "Comparison of reflection methods for measuring optical constants without polarimetric analysis, and proposal for new methods based on the Brewster angle," in Proceedings of the Physical Society LXXVII (1960), Vol. 5, pp. 949-957.
  9. T. E. Darcie and M. S. Whalen, "Determination of optical constants using pseudo-Brewster angle and normal incidence reflectance measurements," Appl. Opt. 23, 1130-1131 (1984).
  10. M. Akimoto and Y. Gekka, "Brewster and pseudo-Brewster angle technique for determination of optical constants," Jpn. J. Appl. Phys. , Part I 31, 120-122 (1992). [CrossRef]
  11. R. Ulrich and R. Torge, "Measurement of thin film parameters with a prism coupler," Appl. Opt. 12, 2901-2908 (1973).
  12. H. Ringneault, F. Flory, and S. Monneret, "Nonlinear totally reflection prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films," Appl. Opt. 34, 4358-4369 (1995).
  13. S. T. Kirsch, "Determining the refractive index and thickness of thin films from prism coupler measurements," Appl. Opt. 20, 2085-2089 (1981).
  14. T. Hashimoto, H. Matsuzaki, H. Tsuchida, and K. Yamamoto, "High-precision measurement for refractive index distribution and dispersion using an improved scanning total reflection method," Jpn. J. Appl. Phys. , Part I 31, 1602-1605 (1992). [CrossRef]
  15. P. S. Hauge, "Generalized rotating-compensator ellipsometry," Surf. Sci. 56, 148-160 (1976). [CrossRef]
  16. O. Hunderi and R. Ryberg, "A simple automatic ellipsometer for a wide energy range," Surf. Sci. 56, 182-188 (1976). [CrossRef]
  17. R. M. A. Azzam, "A perspective on ellipsometry," Surf. Sci. 56, 6-18 (1976). [CrossRef]
  18. R. H. Muller, "Present status of automatic ellipsometers," Surf. Sci. 56, 19-36 (1976). [CrossRef]
  19. G. E. Jellison and B. C. Sales, "Determination of the optical functions of transparent glasses by using spectroscopic ellipsometry," Appl. Opt. 30, 4310-4315 (1991).
  20. U. Beak, G. Reiners, and I. Urban, "Evaluation of optical properties of decorative coating by spectroscopic ellipsometry," Thin Solid Films 220, 234-240 (1992). [CrossRef]
  21. N. J. Harrick, "Determination of refractive index and film thickness from interference fringes," Appl. Opt. 10, 2344-2349 (1971).
  22. A. M. Goodman, "Optical interference method for the approximate determination of refractive index and thickness of a transparent layer," Appl. Opt. 17, 2779-2787 (1978).
  23. M. Abraham, "Refractive index and thickness determination of transparent films: an interference method," Thin Solid Films 109, 93-102 (1983). [CrossRef]
  24. R. Swanepoel, "Determining refractive index and thickness of thin films from wavelength measurements only," J. Opt. Soc. Am. A 2, 1339-1343 (1985).
  25. O. Kafri, K. M. Kreske, and E. Keren, "Refractive index measurement of optical windows by an interferometric-deflectometric method," Appl. Opt. 27, 4602-4603 (1988).
  26. S. D. Nicola, P. Ferraro, A. Finizio, G. Pesce, and G. Pierattini, "Reflective grating interferometer for measuring the refractive index of transparent materials," Opt. Commun. 118, 491-494 (1995). [CrossRef]
  27. D. Tentori, "High-precision refractometry by hologram interferometry," Opt. Eng. 31, 805-808 (1992). [CrossRef]
  28. I. Glatt and A. Livnat, "Determination of the refractive index of a lens using moiré deflectometry," Appl. Opt. 23, 2241-2243 (1984).
  29. M. H. Chiu, J. Y. Lee, and D. C. Su, "Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry," Appl. Opt. 36, 2936-2939 (1997).
  30. D. C. Su, J. Y. Lee, and M. H. Chiu, "New type of liquid refractometer," Opt. Eng. 37, 2795-2797 (1998). [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), pp. 50-52.
  32. W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 175-178.
  33. D. C. Su, M. H. Chiu, and C. D. Chen, "Simple two-frequency laser," Prec. Eng. 18, 161-163 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited