OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 27 — Sep. 20, 2006
  • pp: 6903–6909

Fabrication and characterization of a diffraction-grating transducer in thin polybutadiene rubber film for sensing dynamical strain

J. M. Taguenang, A. Kassu, G. Govindarajalu, M. Dokhanian, A. Sharma, P. B. Ruffin, and C. Brantley  »View Author Affiliations

Applied Optics, Vol. 45, Issue 27, pp. 6903-6909 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (575 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface relief gratings are holographically fabricated in thin polybutadiene rubber films produced by both spin coating and dip coating on glass and metal substrates. These thin-film gratings are characterized for their application as efficient transducers for detecting dynamic strain in solids. The performance of these rubber-grating transducers is compared to surface-mounted fiber Bragg gratings for a range of frequencies between 50 Hz and 30 kHz . Dynamic-strain sensitivity around 1 / Hz is recorded for thin rubber-film grating transducers.

© 2006 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.0310) Optics at surfaces : Thin films

Original Manuscript: September 14, 2005
Revised Manuscript: April 17, 2006
Manuscript Accepted: April 21, 2006

J. M. Taguenang, A. Kassu, G. Govindarajalu, M. Dokhanian, A. Sharma, P. B. Ruffin, and C. Brantley, "Fabrication and characterization of a diffraction-grating transducer in thin polybutadiene rubber film for sensing dynamical strain," Appl. Opt. 45, 6903-6909 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Nagy, C. Apanius, J. W. Siekinen, and H. V. Estranda, "A user-friendly, high-sensitivity strain gauge," Sensors 18, 20-27 (2001).
  2. J. Guo, H. Kuo, J. D. Young, and W. H. Ko, "Buckled beam linear output capacitive strain sensor," presented at the Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, S. C. (6-10 June 2004).
  3. M. Schmidt and N. Fürstenau, "Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation," Opt. Lett. 24, 599-601 (1999). [CrossRef]
  4. A. W. Domanski, T. R. Wolinski, and W. J. Bock, "Polarimetric fiber optic sensors: state-of-the-art and future," in Proc. SPIE 2341, 21-26 (1995).
  5. J. Grant, R. Kaul, S. Taylor, K. Jackson, A. Osei, and A. Sharma, "Investigation of structural properties of carbon-epoxy composites using fiber-Bragg gratings," in Proc. SPIE 4833, 191-199 (2002). [CrossRef]
  6. M. Schmidt, B. Werther, N. Fuerstenau, M. Matthias, and T. Melz, "Fiber-optic extrinsic Fabry-Perot interferometer strain sensor with less than 50 pm displacement resolution using three-wavelength digital phase demodulation," Opt. Express 8, 475-480 (2001). [CrossRef] [PubMed]
  7. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993). [CrossRef] [PubMed]
  8. M. Laylor, S. Calvert, T. Taylor, W. Schulz, R. Lumsden, and E. Udd, "Fiber optic grating moisture and humidity sensors," in Proc. SPIE 4694, 210-217 (2002). [CrossRef]
  9. B. Lissak, A. Arie, and M. Tur, "Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings," Opt. Lett. 23, 1930-1932 (1998). [CrossRef]
  10. M. Song, S. B. Lee, S. S. Choi, and B. Lee, "Dynamic-strain measurement with dual-grating fiber sensor," Appl. Opt. 37, 3484-3486 (1998). [CrossRef]
  11. I. Perez, H. L. Cui, and E. Udd, "Acoustic emission detection using fiber Bragg gratings," in Proc. SPIE 4328, 209-215 (2001). [CrossRef]
  12. W. L. Schulz, J. P. Conte, and E. Udd, "Long gauge fiber optic Bragg grating strain sensors to monitor civil structures," in Proc. SPIE 4330, 56-65 (2001). [CrossRef]
  13. M. Kunzler, E. Udd, S. Kreger, M. Johnson, and V. Henrie, "Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health," in Proc. SPIE 5758, 168-176 (2005). [CrossRef]
  14. A. Sharma, M. Dokhanian, A. Kassu, and A. N. Parekh, "Photoinduced grating formation in azo-dye-labeled phospholipid thin films using 244 nm light," Opt. Lett. 30, 501-503 (2005). [CrossRef] [PubMed]
  15. D. Y. Kim, S. K. Tripathi, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995). [CrossRef]
  16. P. S. Ramanujam, L. Nedelchev, and A. Matharu, "Polarization holographic and surface-relief gratings at 257 nm in an amorphous azobenzene polyester," Opt. Lett. 28, 1072-1074 (2003). [CrossRef] [PubMed]
  17. Y. Zhao, S. Bai, D. Dumont, and T. V. Galstian, "Mechanically tunable diffraction gratings recorded on an azobenzene elastomer," Adv. Mater. 14, 512-514 (2004). [CrossRef]
  18. Y. Zhao, S. Bai, K. Asatryan, and T. Galstian, "Holographic recording in a photoactive elastomer," Adv. Funct. Mater. 13, 781-788 (2003). [CrossRef]
  19. J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathi, "Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers," Appl. Phys. Lett. 72, 2096-2098 (1998). [CrossRef]
  20. Th. Geue, M. G. Saphiannikova, O. Henneberg, U. Pietsch, P. L. Rochon, and A. L. Natansohn, "Formation mechanism and dynamics in polymer surface gratings," Phys. Rev. E 65, 052801 (2002). [CrossRef]
  21. L. M. Dai, H. J. Griesser, X. Y. Hong, A. W. Mau, T. H. Spurling, Y. Y. Yang, and J. W. White, "Photochemical generation of conducting patterns in polybutadiene films," Macromolecules 29, 282-287 (1996). [CrossRef]
  22. G. Natta, Nobel Lectures, Chemistry 1963-1970 (Elsevier, 1972), p. 46.
  23. A. Sharma, L. Phillips, S. Burgett, P. Ruffin, and W. Long, "Strain sensing in fiber-optic coils with buried Bragg gratings," in Proc. SPIE 4087, 1157-1162 (2000). [CrossRef]
  24. A. O. Okorogu, "Remote optical in-plane strain measurements for infrastructure applications," Ph.D. dissertation (Alabama A&M University, 1997).
  25. E. R. Peck, "Theory of comer-cube interferometer," J. Opt. Soc. Am. 38, 1015-1024 (1948). [CrossRef] [PubMed]
  26. L. E. Drain, The Laser Doppler Technique (Wiley, 1980).
  27. M. Alvarez and J. Tamayo, "Optical sequential readout of microcantilever arrays for biological detection," Sens. Actuators B 106, 687-690 (2005). [CrossRef]
  28. J. Ye, "Absolute measurement of a long, arbitrary distance to less than an optical fringe," Opt. Lett. 29, 1153-1155 (2004). [CrossRef] [PubMed]
  29. J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, "Six-degree-of-freedom displacement measurement system using a diffraction grating," Rev. Sci. Instrum. 71, 3214-3219 (2000). [CrossRef]
  30. E. W. Bae, J. A. Kim, and S. H. Kim, "Multi-degree-of-freedom displacement measurement for milli-structures," Meas. Sci. Technol. 12, 1495-1502 (2001). [CrossRef]
  31. P. Wileman, J. M. Coupland, C. D. Creasey, D. M. Rowley, and N. A. Halliwell, "The laser strain gauge: micromachining of diffraction gratings using an excimer laser," Strain 30, 15-18 (1994). [CrossRef]
  32. R. D. Alcock, C. D. Creasey, P. Wileman, N. A. Halliwell, and J. M. Coupland, "Remote detection of the pitch and orientation of a reflective diffraction grating: an optical strain gauge," Proc. R. Soc. , London Ser. A 461, 179-188 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited