Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Selective erasure of speckle-multiplexed holograms by use of a double Mach–Zehnder interferometric arrangement

Not Accessible

Your library or personal account may give you access

Abstract

A novel method to selectively erase and update speckle-multiplexed holograms in photorefractive crystals by use of a double Mach-Zehnder (DMZ) interferometric arrangement is presented. The DMZ arrangement automatically produces a pair of π-phase-shifted interference patterns used for holographic recording, erasure, and update operations with a fairly simple optical configuration that consists of a commonly used dielectric multilayer beam splitter and two mirrors. The recording and the erasure conditions required for erasing a photorefractive hologram quickly and completely are discussed by calculating the temporal property of the hologram buildup and decay using the time-dependent coupled-wave equations. An experiment is also performed, in which arbitrary holograms in speckle-multiplexed holograms are selectively erased and updated with the simple DMZ optical configuration.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Angular and speckle multiplexing of photorefractive holograms by use of fiber speckle patterns

Yong Hoon Kang, Ki Hyun Kim, and Byoungho Lee
Appl. Opt. 37(29) 6969-6972 (1998)

Reflection-type holographic disk memory with random phase shift multiplexing

Osamu Matoba, Yuji Yokohama, Masato Miura, Kouichi Nitta, and Takeaki Yoshimura
Appl. Opt. 45(14) 3270-3274 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved