OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 32 — Nov. 10, 2006
  • pp: 8244–8252

Chromatic confocal spectral interferometry

Evangelos Papastathopoulos, Klaus Körner, and Wolfgang Osten  »View Author Affiliations

Applied Optics, Vol. 45, Issue 32, pp. 8244-8252 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1066 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chromatic confocal spectral interferomertry (CCSI) is a novel scheme for topography measurements that combines the techniques of spectral interferometry and chromatic confocal microscopy. This hybrid method allows for white-light interferometric detection with a high NA in a single-shot manner. To the best of our knowledge, CCSI is the first interferometric method that utilizes a confocally filtered and chromatically dispersed focus for detection and simultaneously allows for retrieval of the depth position of reflecting or scattering objects utilizing the phase (modulation frequency) of the interferometric signals acquired. With the chromatically dispersed focus, the depth range of the sensor is decoupled from the NA of the microscope objective.

© 2006 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(180.1790) Microscopy : Confocal microscopy
(180.3170) Microscopy : Interference microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:

Original Manuscript: May 16, 2006
Revised Manuscript: July 17, 2006
Manuscript Accepted: July 18, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Evangelos Papastathopoulos, Klaus Körner, and Wolfgang Osten, "Chromatic confocal spectral interferometry," Appl. Opt. 45, 8244-8252 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004). [CrossRef] [PubMed]
  2. M. Hering, S. Herrmann, M. Banyay, K. Körner, and B. Jähne, "One-shot line-profiling white-light interferometer with spatial phase shift for measuring rough surfaces," in Proc. SPIE 6188, 14 (2006). [CrossRef]
  3. C. Bosbach, F. Depiereux, T. Pfeifer, and B. Michelt, "Fiber-optic interferometer for absolute distance measurements with high measuring frequency," in Proc. SPIE 4900, 408-415 (2002).
  4. J. Schwider and L. Zhou, "Dispersive interferometric profilometer," Opt. Lett. 19, 995-997 (1994). [CrossRef] [PubMed]
  5. U. Schnell, E. Zimmermenn, and R. Dändliker, "Absolute distance measurement with synchronously sampled white-light channelled spectrum," Pure Appl. Opt. 4, 643-651 (1995). [CrossRef]
  6. M. Bail, G. Häusler, J. M. Herrmann, M. W. Lindner, and R. Ringler, "Optical coherence tomography with the "spectral radar": fast optical analysis in volume scatterers by short coherence interferometry," in Proc. SPIE 2925, 298-303 (1996). [CrossRef]
  7. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  8. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry," Opt. Express 13, 695-701 (2005). [CrossRef] [PubMed]
  9. P. Pavlicek and G. Häusler, "White-light interferometer with dispersion: an accurate fiber-optic sensor for the measurement of distance," Appl. Opt. 44, 2978-2983 (2005). [CrossRef] [PubMed]
  10. P. Hlubina, "Dispersive white-light spectral two-beam interference under general measurement conditions," in Proc. SPIE 5259, 281-288 (2003).
  11. J. Calatroni, A. L. Guerrero, C. Sainz, and R. Escalona, "Spectrally-resolved white-light interferometry as a profilometry tool," Opt. Laser Technol. 28, 485-489 (1996). [CrossRef]
  12. P. Sandoz, G. Tribillon, and H. Perrin, "High-resolution profilometry by using phase calculation algorithms for spectroscopic analysis of white-light interferograms," J. Mod. Opt. 43, 701 (1996). [CrossRef]
  13. E. Papastathopoulos, K. Körner, and W. Osten, "Chromatically dispersed interferometry with wavelet analysis," Opt. Lett. 31, 589-591 (2006). [CrossRef] [PubMed]
  14. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, "Focus-wavelength encoded optical profilometer," Opt. Commun. 49, 229-233 (1984). [CrossRef]
  15. M. A. Browne, O. Akinyemi, and A. Boyde, "Confocal surface profiling utilizing chromatic aberration," Scanning 14, 145-153 (1992). [CrossRef]
  16. H. J. Tiziani and H. M. Uhde, "Three-dimensional imaging sensing by chromatic confocal microscopy," Appl. Opt. 33, 1838-1843 (1994). [CrossRef] [PubMed]
  17. S. L. Dodson, P. C. Sun, and Y. Fainman, "Diffractive lenses for chromatic confocal imaging," Appl. Opt. 36, 4744-4748 (1997). [CrossRef]
  18. S. D. Cha, P. C. Lin, L. J. Zhu, P. C. Sun, and Y. Fainman, "Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror," Appl. Opt. 39, 2605-2613 (2000). [CrossRef]
  19. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, "An application of interference microscopy to integrated circuit inspection and metrology," in Proc. SPIE 775, 233-247 (1987).
  20. G. S. Kino and S. S. C. Chim, "Mirau correlation microscope," Appl. Opt. 29, 3775-3783 (1990). [CrossRef] [PubMed]
  21. C. J. R. Sheppard and K. G. Larkin, "Effect of numerical aperture on interference fringe spacing," Appl. Opt. 34, 4731-4733 (1995). [CrossRef] [PubMed]
  22. P. Lücke, A. Last, J. Mohr, A. Ruprecht, W. Osten, H. Tiziani, and P. Lehmann, "Confocal micro-optical distance sensor for precision metrology," in Proc. SPIE 5459, 180-184 (2004).
  23. A. Ruprecht, C. Pruss, H. Tiziani, W. Osten, P. Lücke, A. Last, J. Mohr, and P. Lehman, "Confocal micro-optical distance sensor: principle and design," Proc. SPIE 5856, 128-135 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited