OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 36 — Dec. 20, 2006
  • pp: 9105–9114

Two-color medium-infrared scanning interferometer for the Frascati tokamak upgrade fusion test device

A. Canton, P. Innocente, and O. Tudisco  »View Author Affiliations

Applied Optics, Vol. 45, Issue 36, pp. 9105-9114 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1946 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A scanning beam interferometer installed on the Frascati tokamak upgrade (FTU) experiment is presented. The scanning beam scheme combined with the small dimensions of the beams produces a system with very high spatial resolution: more than 30 adjacent (nonoverlapping) chords sample most of the plasma cross section. A good time resolution is achieved by the use of a proper scanning device, with a scanning frequency 8   kHz . Very fast events are measured by three additional fixed lines of sight providing a time resolution 100   kHz . The instrument is a two-color medium-infrared-compensated-type interferometer; two wavelengths (colors) are used to measure both the density and the mechanical vibrations of optical components. A CO 2 laser ( λ = 10.6   μm ) is the main light source, and a CO laser ( λ = 5.4   μm ) is the compensation one. The optical scheme is a double pass Mach–Zehnder type. All the retroreflector mirrors are mounted directly on the FTU mechanical structure thanks to the compensation system that allows for large vibration amplitudes of optical components. Heterodyne detection at 30 and 40   MHz is obtained by frequency shifting the reference beams with two acousto-optic modulators (Bragg cells). Many features are implemented to achieve high measurement accuracy and reliability. A real-time system computes the integral density measured on one of the fixed lines of sight and provides an analog signal for density feedback control. The interferometer was used to measure density profiles both in medium-density discharges ( n e 10 20 m 3 ) and in high-density pellet injected discharges ( n e 7 8 × 10 20 m 3 ) . The measurement error is 2 × 10 18 m 2 under optimal conditions but can be higher in some cases, mainly because of the large tilt of the retroreflector mirrors.

© 2006 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.6750) Integrated optics : Systems

Original Manuscript: March 24, 2006
Revised Manuscript: August 11, 2006
Manuscript Accepted: August 21, 2006

A. Canton, P. Innocente, and O. Tudisco, "Two-color medium-infrared scanning interferometer for the Frascati tokamak upgrade fusion test device," Appl. Opt. 45, 9105-9114 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Braithwaite, N. Gottardi, G. Magyar, J. O'Rourke, J. Ryan, and D. Veron, "JET polarinterferometer," Rev. Sci. Instrum. 60, 2825-2834 (1989). [CrossRef]
  2. D. K. Mansfield, H. K. Park, L. C. Johnson, H. M. Anderson, R. Chouinard, V. S. Foote, C. H. Ma, and B. J. Clifton, "Multichannel far-infrared laser interferometer for electron density measurements on the tokamak fusion test reactor," Appl. Opt. 26, 4469-4474 (1987). [CrossRef] [PubMed]
  3. T. N. Carlstrom, D. R. Ahlgren, and J. Crosbie, "Real-time, vibration-compensated CO2 interferometer operation on the DIII-D tokamak," Rev. Sci. Instrum. 59, 1063-1066 (1988). [CrossRef]
  4. P. Innocente and S. Martini, "Development of a vibration-compensated CO2 interferometer for the RFX experiment," Rev. Sci. Instrum. 63, 4996-4998 (1992). [CrossRef]
  5. A. Pizzuto, C. Annino, M. Baldarelli, L. Bettinali, G. Brolatti, C. Crescenzi, G. Maddaluno, B. Riccardi, G. B. Righetti, M. Roccella, and L. Semeraro, "The FTU machine--design, construction, and assembly," Fusion Sci. and Technol. 45, 422-436 (2004).
  6. B. M. Angelini, M. L. Apicella, G. Buceti, C. Centioli, F. Crisanti, F. Iannone, G. Mazza, G. Mazzitelli, M. Panella, and V. Vitale, "The FTU team, FTU Operation," Fusion Sci. Technol. 45, 427-458 (2004).
  7. G. B. Warr, B. D. Blackwell, J. Wach, and J. Howard, "First results from the three-view far- infrared interferometer for the H1 heliac," Fusion Eng. Des. , 34-35, 387-391 (1997). [CrossRef]
  8. P. Innocente and S. Martini, "Two-color CO2 interferometer with single Bragg cell and improved vibration compensation at 3.39 μm," Rev. Sci. Instrum. 59, 1571-1573 (1988). [CrossRef]
  9. P. Innocente, S. Martini, A. Schio, and Ch. Ferrer Roca, "Development of a vibration-compensated CO2 interferometer for the RFX experiment," Rev. Sci. Instrum. 61, 2885-2887 (1990). [CrossRef]
  10. P. Innocente, S. Martini, A. Canton, and L. Tasinato, "Upgrade of the RFX CO2 interferometer using in-vessel optics for extended edge resolution," Rev. Sci. Instrum. 68, 694-697 (1997). [CrossRef]
  11. D. Veron, "Interferometry in large plasma machines," in Course and Workshop on Diagnostics for Fusion Reactor Condictions, P.E.Stott, D.K.Akulina, G.G.Leotta, E.Sindoni, and C.Wharton, eds. (Commission of the European Communities, Bruxelles, 1987), pp. 199-223.
  12. A. Canton, P. Innocente, S. Martini, L. Tasinato, and O. Tudisco, "Spatially scanned two- color mid-infrared interferometer for FTU," Rev. Sci. Instrum. 72, 1085-1088 (2001). [CrossRef]
  13. P. Innocente, S. Martini, and Ch. Ferrer Roca, "An infrared vibration compensated interferometer for the MST experiment," Rev. Sci. Instrum. 63, 4999-5001 (1992). [CrossRef]
  14. C. J. Buchenauer, Acoustically Compensated Two-Wavelength Interferometry for Plasma Density Measurements: One-Dimensional Theory and Applications (Report LA-9880-MS Los Alamos National Laboratory, 1984).
  15. T. W. Fredian and J. A. Stillerman, "X-windows-based user interface for data acquisition and display," Rev. Sci. Instrum. 61, 3283-328 (1990). [CrossRef]
  16. O. Tudisco, G. M. Apruzzese, P. Buratti, L. Cantarini, A. Canton, L. Carraro, V. Cocilovo, R. de Angelis, M. de Benedetti, B. Esposito, L. Gabellieri, E. Giovannozzi, G. Granucci, L. A. Grosso, G. Grosso, P. Innocente, H. Kroegler, M. Leigheb, G. Monari, D. Pacella, L. Panaccione, V. Pericoli-Ridolfini, G. Pizzicaroli, S. Podda, M. E. Puiatti, G. Rocchi, A. Sibio, A. Simonetto, P. Smeulders, U. Tartari, N. Tartoni, B. Tilia, M. Valisa, V. Zanza, and M. Zerbini, "The diagnostic systems in the FTU," Fusion Sci. Technol. 45, 402-421 (2004).
  17. C. Mazzotta, O. Tudisco, A. Canton, P. Innocente, M. DeBenedetti, E. Giovannozzi, D. Marocco, P. Micozzi, G. Monari, and G. Rocchi, "Measurement of density profiles using the new infrared scanning interferometer for FTU," Phys. Scr. T123, 79-83 (2006). [CrossRef]
  18. M. Kogelnik and T. Li, "Laser beams and resonators," Appl. Opt. 5, 1550-1566 (1966). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited