OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 36 — Dec. 20, 2006
  • pp: 9210–9220

Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance

Malik Chami, David McKee, Edouard Leymarie, and Gueorgui Khomenko  »View Author Affiliations

Applied Optics, Vol. 45, Issue 36, pp. 9210-9220 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2029 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scattering phase functions derived from measured (volume-scattering meter, VSM) volume-scattering functions (VSFs) from Crimean coastal waters were found to have systematic differences in angular structure from Fournier–Forand (FF) functions with equivalent backscattering ratios. Hydrolight simulations demonstrated that differences in the angular structure of the VSF could result in variations in modeled subsurface radiance reflectances of up to ± 20 % . Furthermore, differences between VSM and FF simulated reflectances were found to be nonlinear as a function of scattering and could not be explained with the single-scattering approximation. Additional radiance transfer modeling demonstrated that the contribution of multiple scattering to radiance reflectance increased exponentially from a minimum of 16 % for pure water to a maximum of 94 % for turbid waters. Monte Carlo simulations demonstrated that multiple forward-scattering events were the dominant contributors to the generation of radiance reflectance signals for turbid waters and that angular structures in the shape of the VSF at forward angles could have a significant influence in determining reflectance signals for turbid waters.

© 2006 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles

Original Manuscript: June 13, 2006
Revised Manuscript: August 22, 2006
Manuscript Accepted: August 24, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Malik Chami, David McKee, Edouard Leymarie, and Gueorgui Khomenko, "Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance," Appl. Opt. 45, 9210-9220 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Tyler and W. H. Richardson, "Nephelometer for the measurement of volume scattering in situ," J. Opt. Soc. Am. 48, 354-357 (1958). [CrossRef]
  2. T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters, Technical Report SIO 72-78 (Scripps Institute of Oceanography, San Diego, Calif., 1972).
  3. A. Morel, "Diffusion de la lumière par les eaux de mer: résulats expérimentaux et approche théorique," in Optics of the Sea, Interface and In-Water Transmission and Imaging, NATO Advisory Group for Aerospace Research and Development (AGARD), Lecture Series 61, 3.1-1-3.1-76 (1973).
  4. G. Kullenberg, "Observed and computed scattering functions," in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 25-49.
  5. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, "Laboratory measurements of angular distributions of light scattered by phytoplankton and silt," Limnol. Oceanogr. 43, 1180-1197 (1998). [CrossRef]
  6. K. J. Voss, W. M. Balch, and K. A. Kilpatrick, "Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths," Limnol. Oceanogr. 43, 870-876 (1998). [CrossRef]
  7. X. Zhang, M. Lewis, M. E.-G. Lee, B. Johnson, and G. K. Korotaev, "The volume scattering function of natural bubble populations," Limnol. Oceanogr. 47, 1273-1282 (2002). [CrossRef]
  8. M. E. Lee and M. R. Lewis, "A new method for the measurement of the optical volume scattering function in the upper ocean," J. Atmos. Ocean. Technol. 20, 563-571 (2003). [CrossRef]
  9. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, "Optical properties of the particles in the Crimea coastal waters (Black Sea)," J. Geophys. Res. 110, C11020, doi: (2005). [CrossRef]
  10. M. Chami, E. B. Shybanov, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, and G. K. Korotaev, "Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment," Appl. Opt. 45, 3605-3619 (2006). [CrossRef] [PubMed]
  11. M. Chami, E. Marken, J. J. Stamnes, G. A. Khomenko, and G. K. Korotaev, "Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles," J. Geophys. Res. 111, C05013, doi: (2006). [CrossRef]
  12. G. Fournier and J. L. Forand, "Analytic phase function for ocean water," in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 194-201 (1994). [CrossRef]
  13. G. Fournier and M. Jonasz, "Computer-based underwater imaging analysis," in Airborne and In-Water Underwater Imaging, G. Gilbert, ed., Proc. SPIE 3761, 62-77 (1999). [CrossRef]
  14. C. D. Mobley, L. K. Sundman, and E. Boss, "Phase function effects on oceanic light fields," Appl. Opt. 41, 1035-1050 (2002). [CrossRef] [PubMed]
  15. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. II. Bidirectional aspects," Appl. Opt. 32, 6864-6879 (1993). [CrossRef] [PubMed]
  16. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. D. 93, 10909-10924 (1988). [CrossRef]
  17. S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002). [CrossRef] [PubMed]
  18. Y.-J. Park and K. Ruddick, "Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters," Appl. Opt. 44, 1236-1249 (2005). [CrossRef] [PubMed]
  19. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem," Appl. Opt. 35, 4850-4862 (1996). [CrossRef] [PubMed]
  20. A. Morel and H. Loisel, "Apparent optical properties of oceanic water: dependence on the molecular scattering contribution," Appl. Opt. 37, 4765-4776 (1998). [CrossRef]
  21. N. K. Højerslev, "Analytic remote-sensing optical algorithms requiring simple and practical field parameter inputs," Appl. Opt. 40, 4870-4874 (2001). [CrossRef]
  22. Z. P. Lee, K. L. Carder, and K. P. Du, "Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance," Appl. Opt. 43, 4957-4964 (2004). [CrossRef] [PubMed]
  23. R. A. Barnes, W. L. Barnes, W. E. Esaias, and C. R. McClain, "Prelaunch acceptance report for the SeaWiFS radiometer," in SeaWiFS Technical Report Series, S. B. Hooker, E. R. Firestone, and J. G. Acker, eds., NASA Technical Memorandum 104566, 22 (1994).
  24. J.-L. Bézy, S. Delwart, and M. Rast, "MERIS-A new generation of ocean-colour sensor onboard Envisat," ESA Bulletin 103 (2000), http://www.esa.int/esapub/bulletin/bullet103/besy103.pdf.
  25. S. Johnson, "Moderate resolution imaging spectroradiometer (MODIS)," Technical Specification Sheet, RTSC MS 3/05 DTS00-0830 (Raytheon Space and Airborne Systems, Santa Barbara Remote Sensing, Calif., 2002).
  26. R. Santer and N. Martiny, "Sky-radiance measurements for ocean-color calibration-validation," Appl. Opt. 42, 896-907 (2003). [CrossRef] [PubMed]
  27. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997). [CrossRef]
  28. R. C. Smith and K. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981). [CrossRef] [PubMed]
  29. C. D. Mobley and L. K. Sundman, HYDROLIGHT 4.1 Technical Documentation (Sequoia Scientific, Inc., Redmond, Wash., 2000). [PubMed]
  30. W. W. Gregg and K. L. Carder, "A simple spectral solar irradiance model for cloudless maritime atmospheres," Limnol. Oceanogr. 35, 1657-1675 (1990). [CrossRef]
  31. K. M. Case, "Transfer problems and the reciprocity principle," Rev. Mod. Phys. 29, 651-663 (1957). [CrossRef]
  32. International Ocean-Colour Coordinating Group (IOCCG), "Minimum requirements for an operational ocean colour sensor for the open ocean," Vol. 1 Reports of the International Ocean-Colour Coordinating Group (1998).
  33. M. Chami, R. Santer, and E. Dilligeard, "Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing," Appl. Opt. 40, 2398-2416 (2001). [CrossRef]
  34. J. R. V. Zaneveld, "Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation," Appl. Opt. 21, 4146-4150 (1982). [CrossRef] [PubMed]
  35. J. R. V. Zaneveld, "A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties," J. Geophys. Res. 100, 13135-13142 (1995). [CrossRef]
  36. D. McKee, A. Cunningham, and S. Craig, "Semiempirical correction algorithm for AC-9 measurements in a coccolithophore bloom," Appl. Opt. 42, 4369-4374 (2003). [CrossRef] [PubMed]
  37. D. McKee and A. Cunningham, "Evidence for wavelength dependence of the particle scattering phase function and its implication for modeling radiance transfer in shelf seas," Appl. Opt. 44, 126-135 (2005). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited