OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 1 — Jan. 1, 2007
  • pp: 95–105

Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators

Gabriel Milewski, David Engström, and Jörgen Bengtsson  »View Author Affiliations


Applied Optics, Vol. 46, Issue 1, pp. 95-105 (2007)
http://dx.doi.org/10.1364/AO.46.000095


View Full Text Article

Enhanced HTML    Acrobat PDF (1454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffractive optical elements (DOEs) realized by spatial light modulators (SLMs) often have features that distinguish them from most conventional, static DOEs: strong coupling between phase and amplitude modulation, a modulation versus steering parameter characteristic that may not be precisely known (and may vary with, e.g., temperature), and deadspace effects and interpixel cross talk. For an optimal function of the DOE, e.g. as a multiple-beam splitter, the DOE design must account for these artifacts. We present an iterative design method in which the optimal setting of each SLM pixel is carefully chosen by considering the SLM artifacts and the design targets. For instance, the deadspace–interpixel effects are modeled by dividing the pixel to be optimized, and its nearest neighbors, into a number of subareas, each with its unique response and far-field contribution. Besides the customary intensity control, the design targets can also include phase control of the optical field in one or more of the beams in the beam splitter. We show how this can be used to cancel a strong unwanted zeroth-order beam, which results from using a slightly incorrect modulation characteristic for the SLM, by purposely sending a beam in the same direction but with the opposite phase. All the designs have been implemented on the 256 × 256 central pixels of a reflective liquid crystal on silicon SLM with a selected input polarization state and a direction of transmission axis of the output polarizer such that for the available different pixel settings a phase modulation of 2 π   rad could be obtained, accompanied by an intensity modulation depth as high as > 95 % .

© 2007 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1760) Holography : Computer holography
(100.5090) Image processing : Phase-only filters
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Devices

History
Original Manuscript: May 10, 2006
Revised Manuscript: July 26, 2006
Manuscript Accepted: September 4, 2006

Citation
Gabriel Milewski, David Engström, and Jörgen Bengtsson, "Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators," Appl. Opt. 46, 95-105 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-1-95

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited