OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 11 — Apr. 10, 2007
  • pp: 2076–2083

Influence of interband transitions on electron–phonon coupling measurements in Ni films

Patrick E. Hopkins, J. Michael Klopf, and Pamela M. Norris  »View Author Affiliations

Applied Optics, Vol. 46, Issue 11, pp. 2076-2083 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1390 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The reduction in size and the increase in speed of opto- and magnetoelectronic devices is making the probability of nonequilibrium electron–phonon phenomena greater, leading to increased thermal resistance in these devices. The measurement of electron–phonon coupling in materials in these devices is becoming increasingly important for accurate thermal management. Here femtosecond thermoreflectance is used to measure the electron–phonon coupling factor in thin Ni films of varying thickness grown on Si and glass substrates. The thermoreflectance response is measured at 1.3 and 1.55   eV , yielding drastically different responses due to the Fermi-level transition at 1.3   eV in Ni. The influence of this transition on the thermoreflectance response results in a measurement of the electron–phonon coupling factor that is twice as high as that recorded in previous measurements that were unaffected by the Fermi-level transition.

© 2007 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(160.3380) Materials : Laser materials
(240.0310) Optics at surfaces : Thin films
(260.2160) Physical optics : Energy transfer
(260.3060) Physical optics : Infrared
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: September 6, 2006
Revised Manuscript: November 10, 2006
Manuscript Accepted: November 16, 2006
Published: March 20, 2007

Patrick E. Hopkins, J. Michael Klopf, and Pamela M. Norris, "Influence of interband transitions on electron-phonon coupling measurements in Ni films," Appl. Opt. 46, 2076-2083 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Gadzuk, "Resonance-assisted hot electron femtochemistry at surfaces," Phys. Rev. Lett. 76, 4234-4237 (1996). [CrossRef] [PubMed]
  2. S.-S. Wellershoff, J. Hohlfeld, J. Gudde, and E. Matthias, "The role of electron-phonon coupling in femtosecond laser damage of metals," Appl. Phys. A. 69, Suppl. S99-S107 (1999).
  3. T. Q. Qiu and C. L. Tien, "Femtosecond laser heating of multilayer metals--I. Analysis," Int. J. Heat Mass Transfer 37, 2789-2797 (1994). [CrossRef]
  4. A. Majumdar, K. Fushinobu, and K. Hijikata, "Effect of gate voltage on hot-electron and hot-phonon interaction and transport in a submicrometer transistor," J. Appl. Phys. 77, 6686-6694 (1995). [CrossRef]
  5. J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, "Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al," Appl. Opt. 38, 3614-3620 (1999). [CrossRef]
  6. J. Hohlfeld, E. Matthias, R. Knorren, and K. H. Bennemann, "Nonequilibrium magnetization dynamics of nickel," Phys. Rev. Lett. 78, 4861-4864 (1997). [CrossRef]
  7. J. Hohlfeld, J. G. Muller, S.-S. Wellershoff, and E. Matthias, "Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness," Appl. Phys. B 64, 387-390 (1997). [CrossRef]
  8. J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, "Electron and lattice dynamics following optical excitation of metals," Chem. Phys. 251, 237-258 (2000). [CrossRef]
  9. P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, "Femtosecond pump-probe nondestructive examination of materials," Rev. Sci. Instrum. 74, 400-406 (2003). [CrossRef]
  10. T. Q. Qiu, T. Juhasz, C. Suarez, W. E. Bron, and C. L. Tien, "Femtosecond laser heating of multilayer metals--II. Experiments," Int. J. Heat Mass Transfer 37, 2799-2808 (1994). [CrossRef]
  11. A. N. Smith and P. M. Norris, "Influence of intraband transitions on the electron thermoreflectance response of metals," Appl. Phys. Lett. 78, 1240-1242 (2001). [CrossRef]
  12. G. L. Eesley, "Generation of nonequilibrium electron and lattice temepratures in copper by picosecond laser pulses," Phys. Rev. B 33, 2144-2151 (1986). [CrossRef]
  13. C. K. Sun, F. Vallee, L. Acioli, E. P. Ippen, and J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50, 15337-15348 (1994). [CrossRef]
  14. N. D. Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallee, "Nonequilibrium electron dynamics in noble metals," Phys. Rev. B 61, 16956-16966 (2000). [CrossRef]
  15. E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, "Thermoreflectance test of W, Mo, and paramagnetic Cr band structures," Phys. Rev. B 27, 4684-4693 (1983). [CrossRef]
  16. J. Hanus, J. Feinleib, and W. J. Scouler, "Low-energy interband transitions and band structure in nickel," Phys. Rev. Lett. 19, 16-20 (1967). [CrossRef]
  17. H. Ehrenreich, H. R. Philipp, and D. J. Olenchna, "Optical properties and Fermi surface of nickel," Phys. Rev. 131, 2469-2477 (1963). [CrossRef]
  18. J. W. D. Connolly, "Energy bands in ferromagnetic nickel," Phys. Rev. 159, 415-426 (1967). [CrossRef]
  19. F. Weiling and J. Callaway, "Semiempirical description of energy bands in nickel," Phys. Rev. B 26, 710-719 (1982). [CrossRef]
  20. J. C. Phillips, "Fermi surface of ferromagnetic nickel," Phys. Rev. 133, A1020-A1028 (1964). [CrossRef]
  21. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, "Ultrafast spin dynamics in ferromagnetic nickel," Phys. Rev. Lett. 76, 4250-4253 (1996). [CrossRef] [PubMed]
  22. B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, "Femtosecond spin dynamics of epitaxial Cu(111)/Ni/Cu wedges," Appl. Phys. Lett. 87, 5070-5072 (2000).
  23. L. Guidoni, E. Beaurepaire, and J.-Y. Bigot, "Magneto-optics in the ultrafast regime: thermalization of spin populations in ferromagnetic films," Phys. Rev. Lett. 89, 017401 (2002). [CrossRef] [PubMed]
  24. J. Gudde, U. Conrad, V. Jahnke, J. Hohlfeld, and E. Matthias, "Magnetization dynamics of Ni and Co films on Cu(001) and of bulk nickel surfaces," Phys. Rev. B 59, R6608-R6611 (1999). [CrossRef]
  25. I. H. Chowdhury and X. Xu, "Heat transfer in femtosecond laser processing of metal," Numer. Heat Transfer Part A 44, 219-232 (2003). [CrossRef]
  26. T. Q. Qiu and C. L. Tien, "Heat transfer mechanisms during short-pulse laser heating of metals," J. Heat Transfer 115, 835-841 (1993). [CrossRef]
  27. C. A. C. Bosco, A. Azevedo, and L. H. Acioli, "Substrate dependent ultrafast dynamics in thin NiFe films," Appl. Phys. Lett. 83, 1767-1769 (2003). [CrossRef]
  28. T. Q. Qiu and C. L. Tien, "Size effects on nonequilibrium laser heating of metal films," J. Heat Transfer 115, 842-847 (1993). [CrossRef]
  29. A. N. Smith, J. L. Hostetler, and P. M. Norris, "Nonequilibrium heating in metal films: an analytical and numerical analysis," Numer. Heat Transfer Part A 35, 859-873 (1999). [CrossRef]
  30. T. Q. Qiu and C. L. Tien, "Heat transfer mechanisms during short-pulse laser heating on metals," in Transport Phenomena in Materials Processing and Manufacturing (ASME, 1992), HTD-Vol. 196, pp. 41-49.
  31. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel'man, "Electron emission from metal surfaces exposed to ultrashort laser pulses," Sov. Phys. JETP 39, 375-377 (1974).
  32. N. K. Sherman, F. Brunel, P. B. Corkum, and F. A. Hegmann, "Transient response of metals to ultrashort pulse excitation," Opt. Eng. 28, 1114-1121 (1989).
  33. D. S. Ivanov and L. V. Zhigilei, "Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films," Phys. Rev. B 68, 064114 (2003). [CrossRef]
  34. C. Kittel, Introduction to Solid State Physics (Wiley, 1996).
  35. A. P. Caffrey, P. E. Hopkins, J. M. Klopf, and P. M. Norris, "Thin film non-noble transition metal thermophysical properties," Microscale Thermophys. Eng. 9, 365-377 (2005). [CrossRef]
  36. D. E. Gray, American Institute of Physics Handbook (McGraw Hill, 1972).
  37. F. Abeles, "Optics of thin films" in Advanced Optical Techniques, A. C. S. V. Heel, ed. (North-Holland, 1967), pp. 145-188.
  38. R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5, 3883-3894 (1972). [CrossRef]
  39. S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, "Femtosecond room-temperature measurement of the electron-phonon coupling constant λ in metallic superconductors," Phys. Rev. Lett. 64, 2172-2175 (1990). [CrossRef] [PubMed]
  40. H. Hirori, T. Tachizaki, O. Matsuda, and O. B. Wright, "Electron dynamics in chromium probed with 20-fs optical pulses," Phys. Rev. B 68, 113102 (2003). [CrossRef]
  41. W. J. Scouler, "Temperature-modulated reflectance of gold from 2 to 10 eV," Phys. Rev. Lett. 18, 445-448 (1967). [CrossRef]
  42. R. J. Stevens, A. N. Smith, and P. M. Norris, "Signal analysis and characterization of experimental setup for the transient thermoreflectance technique," Rev. Sci. Instrum. 77, 084901 (2006). [CrossRef]
  43. A. Brodeur and S. L. Chin, "Ultrafast white-light continuum generation and self-focusing in transparent condensed media," J. Opt. Soc. Am. B 16, 637-650 (1999). [CrossRef]
  44. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  45. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).
  46. H. Enrenreich, H. R. Philipp, and D. J. Olenchna, "Optical properties and Fermi surface of nickel," Phys. Rev. 131, 2469-2477 (1963). [CrossRef]
  47. J. W. C. de Vries, "Temperature-dependent resistivity measurements on polycrystalline SiO2-covered thin nickel films," Thin Solid Films 150, 209-215 (1987). [CrossRef]
  48. S.-S. Wellershoff, J. Gudde, J. Hohlfeld, J. G. Muller, and E. Matthias, "The role of electron-phonon coupling in femtosecond laser damage of metals," in Proc. SPIE 3343, 378-387 (1998).
  49. J. K. Chen, W. P. Latham, and J. E. Beraun, "The role of electron-phonon coupling in ultrafast laser heating," J. Laser Appl. 17, 63-68 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited