Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm

Not Accessible

Your library or personal account may give you access

Abstract

Two different types of Gauss lens design, which effectively eliminate primary chromatic aberration, are presented using an efficient genetic algorithm (GA). The current GA has to deal with too many targets in optical global optimization so that the performance is not much improved. Generally speaking, achromatic aberrations have a great relationship with variable glass sets for all elements. For optics whose design is roughly convergent, glass sets for optics will play a significant role in axial and lateral color aberration. Therefore better results might be derived from the optimal process of eliminating achromatic aberration, which could be carried out by finding feasible glass sets in advance. As an alternative, we propose a new optimization process by using a GA and involving theories of geometrical optics in order to select the best optical glass combination. Two Gauss-type lens designs are employed in this research. First, a telephoto lens design is sensitive to axial aberration because of its long focal length, and second, a wide-angle Gauss design is complicated by lateral color aberration at the extreme corners because Gauss design is well known not to deal well with wide-angle problems. Without numbers of higher chief rays passing the element, it is difficult to correct lateral color aberration altogether for the Gauss design. The results and conclusions show that the attempts to eliminate primary chromatic aberrations were successful.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Experiments with a genetic algorithm for structural design of cemented doublets with prespecified aberration targets

Saswatee Banerjee and Lakshminarayan Hazra
Appl. Opt. 40(34) 6265-6273 (2001)

Aspherical lens design using hybrid neural-genetic algorithm of contact lenses

Chih-Ta Yen and Jhe-Wen Ye
Appl. Opt. 54(28) E88-E93 (2015)

Aberration design of zoom lens systems using thick lens modules

Jinkai Zhang, Xiaobo Chen, Juntong Xi, and Zhuoqi Wu
Appl. Opt. 53(36) 8424-8435 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.