OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 15 — May. 20, 2007
  • pp: 2903–2906

Integral merit function for broadband omnidirectional mirrors

Alberto G. Barriuso, Juan J. Monzón, Luis L. Sánchez-Soto, and Ángel Felipe  »View Author Affiliations

Applied Optics, Vol. 46, Issue 15, pp. 2903-2906 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By using the notion of wavelength- and angle-averaged reflectance, we assess in a systematic way the performance of finite omnidirectional reflectors. We put forward how this concept can be employed to optimize omnidirectional capabilities. We also apply it to give an alternative meaningful characterization of the bandwidth of these systems.

© 2007 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(310.6860) Thin films : Thin films, optical properties
(350.2460) Other areas of optics : Filters, interference

ToC Category:
Optical Devices

Original Manuscript: December 14, 2006
Manuscript Accepted: January 19, 2007
Published: May 1, 2007

Alberto G. Barriuso, Juan J. Monzón, Luis L. Sánchez-Soto, and Ángel Felipe, "Integral merit function for broadband omnidirectional mirrors," Appl. Opt. 46, 2903-2906 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Dowling, "Photonic and sonic band-gap bibliography," http://baton.phys.lsu.edu/ jdowling/pbgbib.html.
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2468-2469 (1987). [CrossRef]
  4. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  5. J. P. Dowling, "Mirror on the wall: you're omnidirectional after all?" Science 282, 1841-1842 (1998). [CrossRef]
  6. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A 68, 25-28 (1999). [CrossRef]
  7. N. H. Liu, "Propagation of light waves in Thue-Morse dielectric multilayers," Phys. Rev. B 55, 3543-3547 (1997). [CrossRef]
  8. E. Maciá, "Optical engineering with Fibonacci dielectric multilayers," Appl. Phys. Lett. 73, 3330-3332 (1998). [CrossRef]
  9. E. Cojocaru, "Forbidden gaps in finite periodic and quasi-periodic Cantor-like dielectric multilayers at normal incidence," Appl. Opt. 40, 6319-6326 (2001). [CrossRef]
  10. D. Lusk, I. Abdulhalim, and F. Placido, "Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal," Opt. Commun. 198, 273-279 (2001). [CrossRef]
  11. R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, "Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers," Appl. Phys. Lett. 80, 3063-3065 (2002). [CrossRef]
  12. J. W. Dong, P. Han, and H. Z. Wang, "Broad omnidirectional reflection band forming using the combination of Fibonacci quasi-periodic and periodic one-dimensional photonic crystals," Chin. Phys. Lett. 20, 1963-1965 (2003). [CrossRef]
  13. W. H. Southwell, "Omnidirectional mirror design with quarter-wave dielectric stacks," Appl. Opt. 38, 5464-5467 (1999). [CrossRef]
  14. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol. 17, 2018-2024 (1999). [CrossRef]
  15. J. Lekner, "Omnidirectional reflection by multilayer dielectric mirrors," J. Opt. A 2, 349-353 (2000). [CrossRef]
  16. J. Lekner, "Light in periodically stratified media," J. Opt. Soc. Am. A 11, 2892-2899 (1994). [CrossRef]
  17. D. Lusk and F. Placido, "Omnidirectional mirror coating design for infrared applications," Thin Solid Films 492, 226-231 (2005). [CrossRef]
  18. M. D. Huang, S. Y. Park, Y. P. Lee, and K. W. Kim, "Simulation of the reflectivity of one-dimensional photonic crystals made of Ti2O3 and Al2O3 films," J. Korean Phys. Soc. 47, 964-969 (2005).
  19. http://www.sspectra.com/designs/omnirefl.html.
  20. T. Yonte, J. J. Monzón, A. Felipe, and L. L. Sánchez-Soto, "Optimizing omnidirectional reflection by multilayer mirrors," J. Opt. A 6, 127-131 (2004). [CrossRef]
  21. A. G. Barriuso, J. J. Monzón, L. L. Sánchez-Soto, and A. Felipe, "Comparing omnidirectional reflection from periodic and quasi-periodic one-dimensional photonic crystals," Opt. Express 13, 3913-3920 (2005). [CrossRef] [PubMed]
  22. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  23. J. Lekner, Theory of Reflection (Kluwer Academic, 1987).
  24. D. T. F. Marple, "Refractive index of ZnSe, ZnTe, and CdTe," J. Appl. Phys. 35, 539-542 (1964). [CrossRef]
  25. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Application of the needle optimization technique to the design of optical coatings," Appl. Opt. 35, 5493-5506 (1996). [CrossRef] [PubMed]
  26. J. A. Dobrowolski, F. C. Ho, A. Belkind, and V. A. Koss, "Merit functions for more effective thin film calculations," Appl. Opt. 28, 2824-2831 (1989). [CrossRef] [PubMed]
  27. To ensure the reproducibility of our results, we quote here the optimum thicknesses (expressed in nm). For the [LH]20 they are dL = 144 and dH = 59. When all of them are different, we have, for the L medium, 190, 111, 184, 99, 164, 145, 173, 180, 118, 132, 143, 134, 193, 101, 155, 122, 100, 165, 91, and 110. For the H medium they are 58, 141, 92, 140, 54, 122, 88, 71, 79, 46, 47, 72, 125, 143, 87, 112, 106, 59, 120, and 116.
  28. S. J. Orfanidis, Electromagnetic Waves and Antennas (http://www.ece.rutgers.edu/orfanidi/ewa/), Chap. 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited