OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 16 — Jun. 1, 2007
  • pp: 3075–3078

Resonant frequencies of Fabry–Perot interferometers with ultrathin mirror spacings

Jeffrey A. Davis, María del Mar Sánchez-López, Julia Arias, Miguel Navarro, and Ignacio Moreno  »View Author Affiliations

Applied Optics, Vol. 46, Issue 16, pp. 3075-3078 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (637 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fabry–Perot interferometers (FPIs) with multilayer dielectric mirrors and mirror spacings as low as 0.7% of the operating wavelength are studied. It is shown how these low-order FPIs are affected by the phase dispersion characteristics of multilayer dielectric mirrors. Because experimental results in the optical regime are extremely difficult to obtain, radio frequency experiments are performed with coaxial cable FPI structures. Experimental results show excellent agreement with theory. These phase effects in FPIs with ultrathin mirror spacings are of great interest in the design of tunable microcavities with possible applications in optical communications.

© 2007 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(050.5080) Diffraction and gratings : Phase shift
(070.4790) Fourier optics and signal processing : Spectrum analysis
(310.1620) Thin films : Interference coatings
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Diffraction and Gratings

Original Manuscript: December 6, 2006
Manuscript Accepted: January 11, 2007
Published: May 15, 2007

Jeffrey A. Davis, María del Mar Sánchez-López, Julia Arias, Miguel Navarro, and Ignacio Moreno, "Resonant frequencies of Fabry-Perot interferometers with ultrathin mirror spacings," Appl. Opt. 46, 3075-3078 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Knudtson, D. S. Levy, and K. C. Herr, "Electronically tunable, first-order Fabry-Perot infrared filter," Opt. Eng. 35, 2313-2320 (1996). [CrossRef]
  2. S. L. Mielke, R. E. Ryan, T. Hilgeman, L. Lesyna, R. G. Madonna, and W. C. Van Nostrand, "Measurements of the phase shift on reflection for low-order infrared Fabry-Perot interferometer dielectric stack mirrors," Appl. Opt. 36, 8139-8144 (1997). [CrossRef]
  3. M. Xiang, Y. M. Cai, Y. M. Yu, J. Y. Yang, and Y. L. Wang, "Experimental study of the free spectral range (FSR) in FPI with a small plate gap," Opt. Express 11, 3147-3152 (2004). [CrossRef]
  4. E. Garmire, "Theory of quarter-wave stack dielectric mirrors used in a thin Fabry-Perot filter," Appl. Opt. 42, 5442-5449 (2003). [CrossRef] [PubMed]
  5. W. Shen, X. Liu, B. Huang, Y. Zhu, and P. Gu, "The effects of reflection phase shift on the optical properties of a micro-opto-electromechanical system Fabry-Perot tunable filter," J. Opt. A 6, 853-858 (2004). [CrossRef]
  6. A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, "Surface micromachined Fabry-Perot tunable filter," IEEE Photon. Technol. Lett. 8, 393-395 (1996). [CrossRef]
  7. C. K. Madsen, J. A. Walker, J. E. Ford, K. W. Goossen, T. N. Nielsen, and G. Lenz, "A tunable dispersion compensating MEMS all-pass filter," IEEE Photon. Technol. Lett. 12, 651-653 (2000). [CrossRef]
  8. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, "Micro-air-gap-based intrinsic Fabry-Perot interferometric fiber-optic sensor," Appl. Opt. 45, 7760-7766 (2006). [CrossRef] [PubMed]
  9. B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, "Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminium layer in a microcavity," J. Appl. Phys. 85, 3032-3037 (1999). [CrossRef]
  10. M. M. Sánchez-López, J. A. Davis, and K. Crabtree, "Coaxial cable analogs of multilayer dielectric optical coatings," Am. J. Phys. 71, 1314-1319 (2003). [CrossRef]
  11. M. M. Sánchez-López, J. Cos, J. A. Davis, D. A. Miller, and I. Moreno, "Fourier analysis of harmonic frequency transmission dielectric structures," Appl. Opt. 44, 3774-3783 (2005). [CrossRef]
  12. A. Haché and L. Poirier, "Long-range superluminal pulse propagation in a coaxial photonic crystal," Appl. Phys. Lett. 80, 518-520 (2002). [CrossRef]
  13. J. N. Munday and W. M. Robertson, "Negative group velocity pulse tunneling through a coaxial photonic crystal," Appl. Phys. Lett. 81, 2127-2129 (2002). [CrossRef]
  14. R. D. Pradhan and G. H. Watson, "Impurity effects in coaxial connector photonic crystals: A quasi-one-dimensional periodic system," Phys. Rev. B 60, 2410-2415 (1999). [CrossRef]
  15. G. J. Schneider, S. Hanna, J. L. Davis, and G. H. Watson, "Defect modes in coaxial photonic crystals," J. Appl. Phys. 90, 2642-2649 (2001). [CrossRef]
  16. L. Poirier and A. Haché, "Nonlinear coaxial photonic crystal," Appl. Phys. Lett. 78, 2626-2628 (2001). [CrossRef]
  17. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001), Chap. 5. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited