OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 16 — Jun. 1, 2007
  • pp: 3189–3195

Long-term stable device for tuning fiber Bragg gratings

Erik Bélanger, Bernard Déry, Martin Bernier, Jean-Philippe Bérubé, and Réal Vallée  »View Author Affiliations


Applied Optics, Vol. 46, Issue 16, pp. 3189-3195 (2007)
http://dx.doi.org/10.1364/AO.46.003189


View Full Text Article

Enhanced HTML    Acrobat PDF (1114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is demonstrated that with a proper choice of embedding material, the composite beam bending method constitutes an effective and reliable approach for tuning fiber Bragg gratings. A long-term stable device is presented with a dynamic range of 80 nm , which exhibits insertion losses smaller than 0.28 dB and small variations of the full width at half-maximum.

© 2007 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3600) Lasers and laser optics : Lasers, tunable
(160.5470) Materials : Polymers
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Optical Devices

History
Original Manuscript: December 14, 2006
Manuscript Accepted: January 31, 2007
Published: May 15, 2007

Citation
Erik Bélanger, Bernard Déry, Martin Bernier, Jean-Philippe Bérubé, and Réal Vallée, "Long-term stable device for tuning fiber Bragg gratings," Appl. Opt. 46, 3189-3195 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-16-3189


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, "Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient," Opt. Lett. 19, 2027-2029 (1994). [CrossRef] [PubMed]
  2. T. Mizunami, H. Tatehata, and H. Kawashima, "High-sensitivity cryogenic fiber-Bragg-grating temperature sensors using Teflon substrates," Meas. Sci. Technol. 12, 914-917 (2001).
  3. A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001). [CrossRef]
  4. R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, "Dual-fiber Bragg grating sensor for barometric pressure measurement," Meas. Sci. Technol. 14, 2015-2020 (2003). [CrossRef]
  5. M. Wippich and K. L. Dessau, "Tunable lasers and fiber-Bragg-grating sensors," The Industrial Physicist, June/July, 24-27 (2003).
  6. Y.-G. Han, D. S. Moon, Y. Chung, and S. B. Lee, "Flexibly tunable multiwavelength Raman fiber laser based on symmetrical bending method," Opt. Express 13, 6330-6335 (2005). [CrossRef] [PubMed]
  7. Y.-G. Han, S. B. Lee, D. S. Moon, and Y. Chung, "Investigation of a multiwavelength Raman fiber laser based on few-mode fiber Bragg gratings," Opt. Lett. 30, 2200-2202 (2005). [CrossRef] [PubMed]
  8. M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-band continuously tunable all-fiber DFB lasers," IEEE Photon. Technol. Lett. 14, 21-23 (2002). [CrossRef]
  9. G. A. Ball and W. W. Morey, "Compression-tuned single-frequency Bragg grating fiber laser," Opt. Lett. 19, 1979-1981 (1994). [CrossRef] [PubMed]
  10. R. Vallée, E. Bélanger, B. Déry, M. Bernier, and D. Faucher, "Highly efficient and high power Raman fiber laser based on broadband chirped fiber Bragg gratings," J. Lightwave Technol. 24, 5039-5043 (2006). [CrossRef]
  11. B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 416-418 (2003). [CrossRef]
  12. H. Y. Liu, G. D. Peng, and P. L. Chu, "Thermal tuning of polymer optical fiber Bragg gratings," IEEE Phtoton. Technol. Lett. 13, 824-826 (2001). [CrossRef]
  13. T. Inui, T. Komukai, and M. Nakasawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001). [CrossRef]
  14. C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003). [CrossRef]
  15. C. S. Goh, S. Y. Set, and K. Kikuchi, "Widely tunable optical filters based on fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 1306-1308 (2002). [CrossRef]
  16. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003). [CrossRef]
  17. M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited