OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 17 — Jun. 10, 2007
  • pp: 3400–3416

Production and evaluation of silicon immersion gratings for infrared astronomy

J. P. Marsh, D. J. Mar, and D. T. Jaffe  »View Author Affiliations


Applied Optics, Vol. 46, Issue 17, pp. 3400-3416 (2007)
http://dx.doi.org/10.1364/AO.46.003400


View Full Text Article

Enhanced HTML    Acrobat PDF (3141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Immersion gratings, diffraction gratings where the incident radiation strikes the grooves while immersed in a dielectric medium, offer significant compactness and performance advantages over front-surface gratings. These advantages become particularly large for high-resolution spectroscopy in the near-IR. The production and evaluation of immersion gratings produced by fabricating grooves in silicon substrates using photolithographic patterning and anisotropic etching is described. The gratings produced under this program accommodate beams up to 25   mm in diameter (grating areas to 55   mm × 75   mm ). Several devices are complete with appropriate reflective and antireflection coatings. All gratings were tested as front-surface devices as well as immersed gratings. The results of the testing show that the echelles behave according to the predictions of the scalar efficiency model and that tests done on front surfaces are in good agreement with tests done in immersion. The relative efficiencies range from 59% to 75% at 632 .8   nm . Tests of fully completed devices in immersion show that the gratings have reached the level where they compete with and, in some cases, exceed the performance of commercially available conventional diffraction gratings (relative efficiencies up to 71%). Several diffraction gratings on silicon substrates up to 75   mm in diameter having been produced, the current state of the silicon grating technology is evaluated.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(300.6340) Spectroscopy : Spectroscopy, infrared
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 18, 2006
Revised Manuscript: January 30, 2007
Manuscript Accepted: January 31, 2007
Published: May 18, 2007

Citation
J. P. Marsh, D. J. Mar, and D. T. Jaffe, "Production and evaluation of silicon immersion gratings for infrared astronomy," Appl. Opt. 46, 3400-3416 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-17-3400


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. A. Ershov, J. P. Marsh, K. N. Allers, and D. T. Jaffe, "Infrared grisms using anisotropic etching of silicon to produce a highly asymmetric groove profile," in IR Space Telescopes and Instruments, J. C. Mather, ed., Proc. SPIE 4850, 805-812 (2003). [CrossRef]
  2. D. J. Mar, J. P. Marsh, D. T. Jaffe, L. D. Keller, and K. A. Ennico, "Performance of large chemically etched silicon grisms for infrared spectroscopy," in Ground-Based and Airborne Instrumentation for Astronomy, I. S. McLean and M. Iye, eds., Proc. SPIE 6269, 62695R (2006).
  3. U. U. Graf, D. T. Jaffe, E. J. Kim, J. H. Lacy, H. Ling, J. T. Moore, and G. Rebeiz, "Fabrication and evaluation of an etched infrared diffraction grating," Appl. Opt. 33, 96-102 (1994). [CrossRef] [PubMed]
  4. D. T. Jaffe, L. D. Keller, and O. A. Ershov, "Micromachined silicon diffraction gratings for infrared spectroscopy," in Infrared Astronomical Instrumentation, A. M. Fowler, ed., Proc. SPIE 3354, 201-212 (1998). [CrossRef]
  5. L. D. Keller, D. T. Jaffe, O. A. Ershov, T. Benedict, and U. U. Graf, "Fabrication and testing of chemically micromachined silicon echelle gratings," Appl. Opt. 39, 1094-1105 (2000). [CrossRef]
  6. J. P. Marsh, D. J. Mar, and D. T. Jaffe, "Fabrication and performance of silicon immersion gratings for infrared spectroscopy," in Ground-Based and Airborne Instrumentation for Astronomy, I. S. McLean and M. Iye, eds., Proc. SPIE 6269, 62694J (2006). [CrossRef]
  7. S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T. Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, "HIRES: the high-resolution echelle spectrometer on the Keck 10-m telescope," in Instrumentation in Astronomy VIII, D. L. Crawford and E. R. Craine, eds., Proc. SPIE 2198, 362-375 (1994). [CrossRef]
  8. H. Dekker, S. D'Odorico, A. Kaufer, B. Delabre, and H. Kotzlowski, "Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen telescope at the ESO Paranal Observatory," in Optical and IR Telescope Instrumentation and Detectors, M. Iye and A. F. M. Moorwood, eds., Proc. SPIE 4008, 534-545 (2000). [CrossRef]
  9. R. Bernstein, S. A. Shectman, S. M. Gunnels, S. Mochnacki, and A. E. Athey, "MIKE: a double echelle spectrograph for the Magellan telescopes at Las Campanas Observatory," in Instrument Design and Performance for Optical/Infrared Ground-Based Telescopes, M. Iye and A. F. M. Moorwood, eds., Proc. SPIE 4841, 1694-1704 (2003). [CrossRef]
  10. H.-U. Kaeufl, P. Ballester, P. Biereichel, B. Delabre, R. Donaldson, R. Dorn, E. Fedrigo, G. Finger, G. Fischer, F. Franza, D. Gojak, G. Huster, Y. Jung, J.-L. Lizon, L. Mehrgan, M. Meyer, A. Moorwood, J.-F. Pirard, J. Paufique, E. Pozna, R. Siebenmorgen, A. Silber, J. Stegmeier, and S. Wegerer, "CRIRES: a high-resolution infrared spectrograph for ESO's VLT," in Ground-Based Instrumentation for Astronomy, A. F. M. Moorwood and M. Iye, eds., Proc. SPIE 5492, 1218-1227 (2004). [CrossRef]
  11. J. H. Lacy, M. J. Richter, T. K. Greathouse, D. T. Jaffe, Q. Zhu, and C. Knez, "TEXES: sensitive and versatile spectrograph for mid-infrared astronomy," in Instrument Design and Performance for Optical/Infrared Ground-Based Telescopes, M. Iye and F. M. Moorwood, eds., Proc. SPIE 4841, 1572-1580 (2003). [CrossRef]
  12. M. Goto, K. Motohara, M. Imanishi, K. Sugiyama, K. Tomita, F. Iwamuro, and T. Maihara, "Development of a machine-cut metal grating for near-infrared spectroscopy," Publ. Astron. Soc. Pac. 110, 841-847 (1998). [CrossRef]
  13. J. von Fraunhofer, "Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben," in Denkschriften der königlichen Akademie der Wissenschaften zu München 8, 1821-1822 (1822), published in J. von Fraunhofer, Gesammelte schriften. Im auftrage der mathematisch-physikalischen Classe der Königlich Bayerischen Akademie der München (1888).
  14. A. Leitner, "The life and work of Joseph Fraunhofer (1787-1826)," Am. J. Phys. 43, 59-68 (1975). [CrossRef]
  15. E. Hulthén and H. Neuhaus, "Diffraction gratings in immersion," Nature 173, 442-443 (1954). [CrossRef]
  16. L. Sica Jr., "High resolution diffraction grating," U.S. patent 4,475,792 (9 October 1984).
  17. H. Dekker, "An immersion grating for an astronomical spectrograph," in Instrumentation for Ground-Based Optical Astronomy, Present and Future, L.B.Robinson, ed. (Springer-Verlag, 1988), p. 183. [CrossRef]
  18. C. G. Wynne, "Doubling spectral resolution," Mon. Not. R. Astron. Soc. 250, 796-801 (1991).
  19. R. Szumski and D. D. Walker, "The immersed echelle-I. Basic properties," Mon. Not. R. Astron. Soc. 302, 139-144 (1999). [CrossRef]
  20. D. Lee and J. R. Allington-Smith, "An experimental investigation of immersed gratings," Mon. Not. R. Astron. Soc. 312, 57-69 (2000). [CrossRef]
  21. G. Wiedemann and D. E. Jennings, "Immersion grating for infrared astronomy," Appl. Opt. 32, 1176-1178 (1993). [CrossRef] [PubMed]
  22. P. J. Kuzmenko, D. R. Ciarlo, and C. G. Stevens, "Fabrication and testing of a silicon immersion grating for infrared spectroscopy," in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang and P. B. Hays, eds., Proc. SPIE 2266, 566-577 (1994). [CrossRef]
  23. H. U. Kaeufl, K. Kuehl, and S. Vogel, "Grisms from germanium/silicon for astronomical instruments," in Infrared Astronomical Instrumentation, A. M. Fowler, ed., Proc. SPIE 3354, 151-158 (1998). [CrossRef]
  24. N. Ebizuka, M. Iye, and T. Sasaki, "Optically anisotropic crystalline grisms for astronomical spectrographs," Appl. Opt. 37, 1236-1242 (1998). [CrossRef]
  25. F. Vitali, E. Cianci, D. Lorenzetti, V. Foglietti, A. Notargiacomo, E. Giovine, and E. Oliva, "Silicon grisms for high-resolution spectroscopy in the near-infrared," in Optical and IR Telescope Instrumentation and Detectors, M. Iye and A. F. Moorwood, eds., Proc. SPIE 4008, 1383-1394 (2000). [CrossRef]
  26. N. Ebizuka, S.-Y. Morita, T. Shimizu, Y. Yamagata, H. Omori, M. Wakaki, H. Kobayashi, H. Tokoro, and Y. Hirahara, "Development of immersion grating for mid-infrared high dispersion spectrograph for the 8.2 m Subaru Telescope," in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui and S. D'Odorico, eds., Proc. SPIE 4842, 293-300 (2003). [CrossRef]
  27. J. Ge, D. McDavitt, B. Zhao, and S. Miller, "Large format silicon immersion gratings for high resolution infrared spectroscopy," in Optomechanical Technologies for Astronomy, E. Atad-Ettedgui, J. Antebi, and D. Lemke, eds., Proc. SPIE 6273, 62732C (2006). [CrossRef]
  28. P. J. Kuzmenko, "Prospects for machined immersion gratings in the near-infrared and visible," in Optomechanical Technologies for Astronomy, E. Atad-Ettedgui, J. Antebi, and D. Lemke, eds., Proc. SPIE 6273, 62733S (2006). [CrossRef]
  29. P. J. Kuzmenko, L. M. Little, P. J. Davis, and S. L. Little, "Modeling, fabrication, and testing of a diamond-machined germanium immersion grating," in IR Space Telescopes and Instruments, J. C. Mather, ed., Proc. SPIE 4850, 1179-1190 (2003). [CrossRef]
  30. P. J. Kuzmenko, P. J. Davis, S. L. Little, L. M. Little, and J. V. Bixler, "High efficiency germanium immersion gratings," in Optomechanical Technologies for Astronomy, E. Atad-Ettedgui, J. Antebi, and D. Lemke, eds., Proc. SPIE 6273, 62733T (2006). [CrossRef]
  31. J.-D. T. Smith, S. A. Rinehart, J. R. Houck, J. E. Van Cleve, J. C. Wilson, M. R. Colonno, J. Schoenwald, B. Pirger, and C. Blacken, "SCORE 1+: enhancing a unique mid-infrared spectrograph," in Infrared Astronomical Instrumentation, A. M. Fowler, ed., Proc. SPIE 3354, 7980809 (1998). [CrossRef]
  32. Y. Ikeda, N. Kobayashi, S. Kondo, C. Yasui, K. Motohara, and A. Minami, "WINERED: a warm near-infrared high-resolution spectrograph," in Ground-Based and Airborne Instrumentation for Astronomy, I. S. McLean and M. Iye, eds., Proc. SPIE 6269, 62693T (2006). [CrossRef]
  33. J. T. Rayner, "Evaluation of a solid KRS-5 grism for infrared astronomy," in Infrared Astronomical Instrumentation, A. M. Fowler, ed., Proc. SPIE 3354, 289-294 (1998). [CrossRef]
  34. K. H. Hinkle, R. Drake, and T. A. Ellis, "Cryogenic single-crystal silicon optics," in Instrumentation in Astronomy VIII, D. L. Crawford and E. R. Craine, eds., Proc. SPIE 2198, 516-524 (1994). [CrossRef]
  35. K. G. Lyon, G. L. Salinger, C. A. Swenson, and G. K. White, "Linear thermal expansion measurements on silicon from 6 to 340 K," J. Appl. Phys. 48, 865-868 (1977). [CrossRef]
  36. Y. Okada and Y. Tokumaru, "Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K," J. Appl. Phys. 56, 314-320 (1984). [CrossRef]
  37. C. J. Glassbrenner and G. A. Slack, "Thermal conductivity of silicon and germanium from 3 °K to the melting point," Phys. Rev. 134, A1058-A1069 (1964). [CrossRef]
  38. H. Y. Fan and M. Becker, "Infrared absorption of silicon," Phys. Rev. 78, 178-179 (1950). [CrossRef]
  39. W. Spitzer and H. Y. Fan, "Infrared absorption in n-type silicon," Phys. Rev. 108, 268-271 (1957). [CrossRef]
  40. W. R. Runyan, Silicon Semiconductor Technology (McGraw-Hill, 1965).
  41. G. G. MacFarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, "Fine structure in the absorption-edge spectrum of Si," Phys. Rev. 111, 1245-1254 (1958). [CrossRef]
  42. E. Bassous, "Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon," IEEE Trans. Electron. Devices 25, 1178-1185 (1978). [CrossRef]
  43. W. T. Tsang and S. Wang, "Preferentially etched diffraction gratings in silicon," J. Appl. Phys. 46, 2163-2166 (1975). [CrossRef]
  44. E. Loewen, D. Maystre, E. Popov, and L. Tsonev, "Echelles: scalar, electromagnetic, and real-groove properties," Appl. Opt. 34, 1707-1727 (1995). [CrossRef] [PubMed]
  45. J. Moore, H. Ling, U. U. Graf, and D. T. Jaffe, "A boundary integral approach to the scattering from periodic gratings," Microwave Opt. Technol. Lett. 5, 480-483 (1992). [CrossRef]
  46. V. N. Mahajan, Optical Imaging and Aberrations, Part II. (SPIE Press, 2001). [CrossRef]
  47. B. Depuydt, P. M. Boone, P. Union, P. F. Muys, D. Vyncke, and C. Goessens, "Interferometric characterization of stress birefringence in germanium," in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE 3098, 559-565 (1997). [CrossRef]
  48. D. L. Kendall, "On etching very narrow grooves in silicon," Appl. Phys. Lett. 26, 195-198 (1975). [CrossRef]
  49. D. L. Kendall and R. Shoultz, "Wet chemical etching of silicon and 10 challenges for micromachiners," in SPIE Handbook of Microfabrication, Micromachining, and Microlithography, P.Rai-Choudhury, ed. (SPIE Optical Press, 1997), Vol. 2, pp. 41-97.
  50. P. J. Kuzmenko and D. R. Ciarlo, "Improving the optical performance of etched silicon gratings," in Infrared Astronomical Instrumentation, A. M. Fowler, ed., Proc. SPIE 3354, 357-367 (1998). [CrossRef]
  51. M. Madou, Fundamentals of Microfabrication (CRC Press, 1997).
  52. T. Baum and D. J. Schiffrin, "AFM study of surface finish improvements by ultrasound in the anisotropic etching of Si〈100〉 in KOH for micromachining applications," J. Micromech. Microeng. 7, 338-342 (1997). [CrossRef]
  53. H. Seidel, "The mechanism of anisotropic, electrochemical silicon etching in alkaline solutions," in Solid-State Sensor and Actuator Workshop, 1990, 4th Technical Digest (IEEE Press, 1990), pp. 86-91.
  54. W. Van Gelder and V. E. Hauser, "The etching of silicon nitride in phosphoric acid with silicon dioxide as a mask," J. Electrochem. Soc. 114, 869-872 (1967). [CrossRef]
  55. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1997).
  56. D. J. Schroeder and R. L. Hilliard, "Echelle efficiencies: theory and experiment," Appl. Opt. 19, 2833-2841 (1980). [CrossRef] [PubMed]
  57. E. W. Palmer, M. C. Hutley, A. Franks, J. F. Verrill, and B. Gale, "Diffraction gratings," Rep. Prog. Phys. 38, 975-1048 (1975). [CrossRef]
  58. J. P. Marsh, O. A. Ershov, and D. T. Jaffe, "Silicon grisms and immersion gratings produced by anisotropic etching: testing and analysis," in IR Space Telescopes and Instruments, J. C. Mather, ed., Proc. SPIE 4850, 797-804 (2003). [CrossRef]
  59. R. G. Tull, P. J. MacQueen, C. Sneden, and D. L. Lambert, "The high-resolution cross-dispersed echelle white-pupil spectrometer of the McDonald Observatory 2.7-m telescope," Publ. Astron. Soc. Pac. 107, 251-264 (1995). [CrossRef]
  60. E. D. Palik, O. J. Glembocki, I. Heard, Jr., P. S. Burno, and L. Tenerz, "Etching roughness for (100) silicon surfaces in aqueous KOH," J. Appl. Phys. 70, 3291-3300 (1991). [CrossRef]
  61. G. Findler, J. Muchow, M. Koch, and H. Münzel, "Temporal evolution of silicon surface roughness during anisotropic etching processes," in Micro-Electro Mechanical Systems (IEEE Press, 1992), pp. 62-66. [CrossRef]
  62. K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa, and S. Ito, "Roughening of single-crystal silicon surface etched by KOH water solution," Sens. Actuators A 73, 122-130 (1999). [CrossRef]
  63. J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, 1999).
  64. J. P. Marsh, "Production and evaluation of silicon diffractive optics for infrared astronomy," Ph.D. dissertation (The University of Texas at Austin, 2006).
  65. B. J. Grenon, D. C. Defibaugh, D. M. Sprout, and C. J. Taft, "Manufacturing performance of the ALTA 3000 mask writer," in Fifteenth Annual BACUS Symposium on Photomask Technology and Management, G. V. Shelden and J. N. Wiley, eds., Proc. SPIE 2621, 14-18 (1995). [CrossRef]
  66. G. W. Stroke, "Diffraction gratings," in Handbuch der Physik (Springer-Verlag, 1967), Vol. 29, pp. 426-758.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited