OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 22 — Aug. 1, 2007
  • pp: 5034–5037

Terahertz wave switch based on silicon photonic crystals

Jiusheng Li, Jinlong He, and Zhi Hong  »View Author Affiliations

Applied Optics, Vol. 46, Issue 22, pp. 5034-5037 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact and integrated terahertz (THz) wave photonic crystal switch is proposed in silicon. The switch operates based on a dynamic shift of the photonic bandgap by using an external applied electric field. The plane wave expansion method and the finite-difference time-domain method are used to verify and analyze the characteristics of the proposed THz wave switch. Numerical simulation results show that the THz wave switch has a high extinction ratio of 29.9   dB .

© 2007 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: January 24, 2007
Revised Manuscript: April 26, 2007
Manuscript Accepted: April 26, 2007
Published: July 6, 2007

Jiusheng Li, Jinlong He, and Zhi Hong, "Terahertz wave switch based on silicon photonic crystals," Appl. Opt. 46, 5034-5037 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. V. Altukhov, E. G. Chirkova, V. P. Sinis, M. S. Kagan, Y. P. Gousev, S. G. Thomas, K. L. Wang, M. A. Odnoblyudov, and I. N. Yassievich, "Towards Si1−xGex quantum-well resonant-state terahertz laser," Appl. Phys. Lett. 79, 3909-3911 (2001). [CrossRef]
  2. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002). [CrossRef] [PubMed]
  3. P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002). [CrossRef]
  4. K. L. Nguyen, M. L. Johns, L. Gladden, C. H. Worrall, P. Alexander, H. E. Beere, M. Pepper, D. A. Ritchie, J. Alton, S. Barbieri, and E. H. Linfield, "Three-dimensional imaging with a terahertz quantum cascade laser," Opt. Express. 14, 2123-2129 (2006). [CrossRef] [PubMed]
  5. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, "T-ray computed tomography," Opt. Lett. 27, 1312-1314 (2002). [CrossRef]
  6. R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000). [CrossRef]
  7. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). [CrossRef] [PubMed]
  8. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  9. L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, "Ultrafast opto-terahertz photonic crystal modulator," Opt. Lett. 32, 680-682 (2007). [CrossRef] [PubMed]
  10. A. Sharkawy, S. Shi, D. W. Prather, and R. A. Soref, "Electro-optical switching using coupled photonic crystal waveguides," Opt. Express 10, 1048-1059 (2002). [PubMed]
  11. N. Jukam and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003). [CrossRef]
  12. D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66 (2004). [CrossRef]
  13. T.-R. Tsai, C.-Y. Chen, C.-L. Pan, R.-P. Pan, and X.-C. Zhang, "THz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB," Appl. Opt. 42, 2372-2376 (2003). [CrossRef] [PubMed]
  14. Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, "Tuanble omnidirectional refraction bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001). [CrossRef]
  15. T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB, Appl. Opt. 42, 2372-2376 (2003). [CrossRef] [PubMed]
  16. I. C. Khoon and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).
  17. Y. Shimoda, M. Ozaki, and K. Yoshino, "Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal," Appl. Phys. Lett. 79, 3627-3629 (2001). [CrossRef]
  18. M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002). [CrossRef]
  19. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited