Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Case study of modeled aerosol optical properties during the SAFARI 2000 campaign

Not Accessible

Your library or personal account may give you access

Abstract

We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2000 (SAFARI 2000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3–1.5 μm wavelength range to assumptions regarding the mixing scenario. We considered two models for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell–Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81–0.91 at λ=0.50  μm). The difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Surface aerosol radiative forcing derived from collocated ground-based radiometric observations during PRIDE, SAFARI, and ACE-Asia

Richard A. Hansell, Si-Chee Tsay, Qiang Ji, K. N. Liou, and Szu-Cheng Ou
Appl. Opt. 42(27) 5533-5544 (2003)

Characterization of aerosol optical properties using multiple clustering techniques over Zanjan, Iran, during 2010–2013

Maryam Gharibzadeh, Khan Alam, Yousefali Abedini, Abbasali Aliakbari Bidokhti, Amir Masoumi, and Humera Bibi
Appl. Opt. 57(11) 2881-2889 (2018)

Retrieval of the ultraviolet aerosol optical depth during a spring campaign in the Bavarian Alps

Jacqueline Lenoble, Timothy Martin, Mario Blumthaler, Rolf Philipona, Astrid Albold, Thierry Cabot, Alain de La Casinière, Julian Gröbner, Dominique Masserot, Martin Müller, Thomas Pichler, Günther Seckmeyer, Daniel Schmucki, Mamadou Lamine Touré, and Alexis Yvon
Appl. Opt. 41(9) 1629-1639 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved