OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 22 — Aug. 1, 2007
  • pp: 5304–5310

Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device—alternative approach

Jitendra Nath Roy and Dilip Kumar Gayen  »View Author Affiliations

Applied Optics, Vol. 46, Issue 22, pp. 5304-5310 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Interferometric devices have drawn a great interest in all-optical signal processing for their high-speed photonic activity. The nonlinear optical loop mirror provides a major support to optical switching based all-optical logic and algebraic operations. The gate based on the terahertz optical asymmetric demultiplexer (TOAD) has added new momentum in this field. Optical tree architecture (OTA) plays a significant role in the optical interconnecting network. We have tried to exploit the advantages of both OTA- and TOAD-based switches. We have proposed a TOAD-based tree architecture, a new and alternative scheme, for integrated all-optical logic and arithmetic operations.

© 2007 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(200.4560) Optics in computing : Optical data processing
(200.4650) Optics in computing : Optical interconnects
(200.4660) Optics in computing : Optical logic
(220.4830) Optical design and fabrication : Systems design
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Optics in Computing

Original Manuscript: December 21, 2006
Revised Manuscript: April 27, 2007
Manuscript Accepted: May 3, 2007
Published: July 12, 2007

Jitendra Nath Roy and Dilip Kumar Gayen, "Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device--alternative approach," Appl. Opt. 46, 5304-5310 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tanida and Y. Ichioka, "Optical logic array processor using shadowgrams," J. Opt. Soc. Am. A 73, 800-808 (1983). [CrossRef]
  2. M. A. Karim and A. A. S. Awal, Optical Computing: An Introduction (Wiley, 2003).
  3. Z. Li, Z. Chen, and B. Li, "Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference," Opt. Express 13, 1033-1038 (2005). [CrossRef] [PubMed]
  4. J. N. Roy and S. Mukhopadhyay, "A minimization scheme of optical space variant logic operation in a combinational architecture," Opt. Commun. 119, 499-504 (1995). [CrossRef]
  5. S. D. Smith, I. Janossy, H. A. Mackenzie, J. G. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, and A. C. Walker, "Nonlinear optical circuits, logic gates for optical computers: the first digital optical circuits," Opt. Eng. 24, 569-573 (1985).
  6. H. J. Caulfield, W. T. Rhodes, M. J. Foster, and S. Horvitz, "Optical implementation of systolic array processing," Opt. Commun. 40, 86-92 (1981). [CrossRef]
  7. M. S. Alam, "Parallel optical computing using recorded trinary signed-digit numbers," Appl. Opt. 33, 4392-4397 (1994). [CrossRef] [PubMed]
  8. T. Yatagai, "Optical space variant logic gate array based on spatial encoding technique," Opt. Lett. 11, 260-262 (1986). [CrossRef] [PubMed]
  9. K. W. Wang and L. M. Cheng, "Space variant optical logic operations based on operation dependent encoding method," Appl. Opt. 33, 2134-2138 (1994). [CrossRef]
  10. M. A. Karim, A. A. S. Awwal, and A. K. Cheri, "Polarization encoded optical shadow casting logic unit," Appl. Opt. 26, 2720-2726 (1987). [CrossRef] [PubMed]
  11. A. W. Lohmann, "Polarization and optical logic," Appl. Opt. 25, 1594-1599 (1986). [CrossRef] [PubMed]
  12. J. Weight, "Binary logic by spatial filtering," Opt. Eng. 26, 28-33 (1987).
  13. Z. Zhang and L. Liu, "Optical programmable triple-in binary logic gate," Appl. Opt. 31, 6200-6206 (1992). [CrossRef] [PubMed]
  14. N. Pahari, D. N. Das, and S. Mukhopadhyay, "All-optical method for addition of binary data by nonlinear materials," Appl. Opt. 43, 6147-6150 (2004). [CrossRef] [PubMed]
  15. I. Glesk, R. J. Runser, and P. R. Prucnal, "New generation of devices for all-optical communication," Acta Phys. Slov. 51, 151-162 (2001).
  16. N. J. Doran and D. Wood, "Nonlinear loop mirror," Opt. Lett. 13, 56-58 (1988). [CrossRef] [PubMed]
  17. T. Yamamoto, E. Yoshida, and M. Nakazawa, "Ultra fast nonlinear optical loop mirror for demultiplexing 640Gbit/s TDM signals," Electron. Lett. 34, 1013-1014 (1998). [CrossRef]
  18. A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 168, 89-93 (1999). [CrossRef]
  19. A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, "All-optical full-adder with bit differential delay," Opt. Commun. 156, 22-26 (1998). [CrossRef]
  20. A. J. Poustie, R. J. Manning, and A. E. Kelly, "All-optical binary counter," Opt. Express 6, 69-74 (2000). [CrossRef] [PubMed]
  21. M. Jino and T. Matsumoto, "Ultra fast all-optical logic operations in a nonlinear sagnac interferometer with two control beams," Opt. Lett. 16, 220-222 (1991). [CrossRef]
  22. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall'Ara, "20 Gb/s all-optical XOR with UNI gate," IEEE Photon. Technol. Lett. 12, 834-836 (2000). [CrossRef]
  23. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001), Chap. 3.
  24. V. W. S. Chan, K. L. Hall, E. Modiano, and K. A. Rauschenbach, "Architectures and technologies for high-speed optical data networks," J. Lightwave Technol. 16, 2146-2168 (1998). [CrossRef]
  25. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-789 (1993). [CrossRef]
  26. S. Mukhopadhyay, "An optical conversion system: from binary to decimal and decimal to binary," Opt. Commun. 76, 309-312 (1990). [CrossRef]
  27. S. Mukhopadhyay, "Optical implementation of knowledge based expression in data form," Opt. Eng. 31, 1284-1286 (1992). [CrossRef]
  28. J. N. Roy, A. K. Maiti, and S. Mukhopadhyay, "Designing of an all-optical time division multiplexing scheme with the help of nonlinear material based tree-net architecture," Chin. Opt. Lett. 4, 483-486 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited